首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fortyone successive flows of the Deccan Traps have been investigated at Mahabaleshwar, India, and the rocks from the twenty two different flows have been newly analysed. All of these basalts are silica-saturated tholeiites; and the series shows minor gradual variation with the order of eruption. These seem to be a result of magmatic differentiation somewhat similar to that shown in the Skaergaard intrusion.  相似文献   

2.
3.
Compositional studies on different forms of magnetite, ulvospinel, ilmenite and hematite mineral phases occurring in 37 lava flows and 6 dykes of the Mandla lobe are presented in this paper. Ilmenite (0001) in equilibrium with titanomanetite show high values of temperature of equilibration, ranging from 1172–974°C, for high alumina quartz normative tholeiitic lava flows of Chemical Type - A; 1129–1229°C for low alumina quartz normative tholeiitic lava flows of Chemical Type - B; 1283–1124°C for tholeiitic lava flows of Chemical Type - F and 1243°C and 99O°C for two diopside olivine normative tholeiite flows of Chemical Type D. High olivine normative flows of Chemical Type - G and H show 1095°C and 1092°C respectively. Whereas, high hypersthene normative tholeiite flow of Chemical me C shows temperature of 1187°C. Data plots disposition over iron-titanium oxide equilibration temperature vs – logfo2, diagram for Mandla lava flows and other parts of the Deccan (Igatpuri, Mahabaleshwer, Nagpur and Sagar areas) revealed that tholeiitic (evolved) basalt of the eastern Deccan volcanic province formed at high temperatures whereas, picritic (primitive) lavas of Igatpuri and tholeiitic basalt of Mahabaleshwar areas were formed at low temperatures. Mahabaleshwer basalts follow FMQ (fayalite-magnetite-quartz) buffer curve but, plots of the Mandla basalts lie above this curve indicating higher temperatures of crystallisation of ilmenite-titanomagnetite than that of the lava flows from other parts of Deccan 'Raps. The eastern Deccan Traps are most evolved types of lava as characterised by its low Mg-number and Ni content whereas, Igatpuri lava flows are picritic (primitive), having high Mg-number and Ni contents. Temperature vs FeO + Fe2O3 / FeO + Fe2O3 + MgO ratio data plots for Mandla and other Deccan lava flows and liquidus data for Hawaiian tholeiites, indicated that Igatpuri basalts lie parallel to the liquidus line of Hawaiian tholeiite but at lower temperatures. Large data plots of Mandla lava flows lie along the liquidus line of the Hawaiian lava. The highly vesicular nature of compound lava flows having large amount of volatile is responsible for low temperature values whereas, lava flows represented by high temperatures show high modal values of glass and opaque minerals.  相似文献   

4.
Geochemical investigations of Wai sub-group volcanic flows (in and around Mahabaleshwar) have been undertaken to determine the petrogenetic processes involved in the formation of volcanic flows. In comparison to the Ambenali Formation, Mahabaleshwar Formation flows were affected more by crustal materials, which left a signature consisting of enriched levels of K, Rb, Ba, Ti and P. Ratios of Nb/Zr and Ba/Y were sensitive to fractional crystallization; Mahabaleshwar formation flows showed the highest Nb/Zr ratios. Ba was noted as a boundary marker element between the Ambenali (47.3 to 63.9 ppm Ba) and Mahabaleshwar (83.1 to 180 ppm) formations. The general trend of incompatible element concentrations increasing from lower Poladpur to upper Mahabaleshwar flows with increasing Zr and the linear array on the plot are consistent with the fractionation of olivine and clinopyroxene. MgO ranged from 4.8 to 7.1 wt%, TiO2 from 1.8 to 4.6 wt%, SiO2 from 47 to 52 wt% and Al2O3 from 12 to15.5 wt%. The Mg number (Mg#) was much lower, ranging from 36 to 50. The K2O/ P2O5 ratio showed the role of assimilation in the basaltic flows. TiO2, Y, Zr, Nb and Mg# were used to determine fractional crystallization, whereas Ba, Rb, K2O and SiO2 were used for monitoring the fractional crystallization effects of crustal contamination. The range of Zr/Y and TiO2 > 1.8 wt% appears to have been generated by fractional crystallization starting from enriched mafic precursors.  相似文献   

5.
The Khopoli intrusion, exposed at the base of the Thakurvadi Formation of the Deccan Traps in the Western Ghats, India, is composed of olivine gabbro with 50–55 % modal olivine, 20–25 % plagioclase, 10–15 % clinopyroxene, 5–10 % low-Ca pyroxene, and <5 % Fe-Ti oxides. It represents a cumulate rock from which trapped interstitial liquid was almost completely expelled. The Khopoli olivine gabbros have high MgO (23.5–26.9 wt.%), Ni (733–883 ppm) and Cr (1,432–1,048 ppm), and low concentrations of incompatible elements including the rare earth elements (REE). The compositions of the most primitive cumulus olivine and clinopyroxene indicate that the parental magma of the Khopoli intrusion was an evolved basaltic melt (Mg# 49–58). Calculated parental melt compositions in equilibrium with clinopyroxene are moderately enriched in the light REE and show many similarities with Deccan tholeiitic basalts of the Bushe, Khandala and Thakurvadi Formations. Nd-Sr isotopic compositions of Khopoli olivine gabbros (εNdt?=??9.0 to ?12.7; 87Sr/86Sr?=?0.7088–0.7285) indicate crustal contamination. AFC modelling suggests that the Khopoli olivine gabbros were derived from a Thakurvadi or Khandala-like basaltic melt with variable degrees of crustal contamination. Unlike the commonly alkalic, pre- and post-volcanic intrusions known in the Deccan Traps, the Khopoli intrusion provides a window to the shallow subvolcanic architecture and magmatic processes associated with the main tholeiitic flood basalt sequence. Measured true density values of the Khopoli olivine gabbros are as high as 3.06 g/cm3, and such high-level olivine-rich intrusions in flood basalt provinces can also explain geophysical observations such as high gravity anomalies and high seismic velocity crustal horizons.  相似文献   

6.
A late-stage rift-related tholeiite-alkalic suite of igneous intrusions cut the Deccan Traps lavas at the western Indian continental margin. The suite comprises intrusives that can be grouped into ten lithotypes on the basis of their mutual relationships. Tholeiitic types predate the alkaline rocks and greatly predominate, however, the alkaline members exhibit more diversity in mineralogy and chemistry, and are amongst the rare magmatic rocks from the Deccan that host both mantle and lower crustal xenoliths. The mineralogy of most rock types is dominated by clinopyroxene. The diversity of the alkaline rocks could be mainly accounted for by fractional crystallization and mixing between evolved and primitive melts under varying P-T conditions. Sodic and potassic lamprophyres are amongst the most primitive samples with high Mg #, FeO/MgO < 1, high Cr and also with relatively high Ba, Sr, Zr and Nb. They are the most deeply derived magmas within the Deccan Traps as is evident from the mantle and lower crustal xenoliths entrained by them. They possibly represent low degree melts of incompatible element-enriched mantle source rocks. The nephelinites are strongly porphyritic and despite their high Mg #s can be regarded as evolved magmas that have been responsible for the formation of the tephriphonolite daughter. The nephelinites have undergone contamination by lower crustal granulites. The composite intrusions of microdiorites with their complexly zoned mineralogy dominated by plagioclase and amphiboles/micas represent hybrid rocks that have resulted from mixing between tholeiitic and trachytic melts partly at depth and partly at shallow crustal levels.  相似文献   

7.
8.
Detailed stratigraphy based on whole-rock geochemistry is presentedfor a 1200 m sequence of basaltic lava flows in the WesternGhats escarpment near Mahabaleshwar. Five separate sectionsare used to define a regional dip of approximately 0–5?to the SW. From the base upwards the following formations aredescribed: Bushe, Lower Poladpur, Upper Poladpur, Ambenali,and Mahabaleshwar. Inter-formation boundaries, with the exceptionof the Upper Poladpur-Ambenali, are sharp, and are particularlywell defined by breaks in Sr-isotopic composition. Two of theformation bases are marked by abnormally mafic flows—the Kamshedi picrite horizon at the base of the Upper Poladpur,and the Kelghar mafic unit at the base of the Mahabaleshwar.Major element compositions are controlled throughout largelyby the degree of gabbro fractionation. Intense crustal contaminationfurther modifies compositions in the lower part of the sequence(Bushe-Upper Poladpur) and has strong effects on trace elementsand Sr-isotopes. Contamination decreases up-sequence leadingto the comparatively uniform Ambenali rocks. The MahabaleshwarFormation represents a change towards magmatism generated inan enriched mantle with many characteristics similar to thoseof oceanic island basalts. The geochemical discussion dealsmainly with two well-developed mixing lines, one between Ambenalimagmas and granitic crust, the other between ambenali magmasand the products of the postulated enriched mantle source. Thedetailed stratigraphic sequences strongly support the RTF (replenished,tapped, fractionated) magma chamber model of O‘Hara &Mathews(1981) and the idea of periodical replenishment by picriticmagmas (e. g. Huppert & Sparks, 1980b). This is believedto be the first demonstration of such processes operating ona large scale in a continental basalt province.  相似文献   

9.
Field investigations of the Deccan Trap lava sequence along a 70 km traverse in the Narsingpur-Harrai-Amarwara area of central India indicate twenty lava flows comprising a total thickness of around 480 m. Primary volcanic structures like vesicles and cooling joints are conspicuous in this volcanic succession and are used to divide individual flows into three well-defined zones namely the lower colonnade zone, entablature zone, and the upper colonnade zone. The variable nature of these structural zones is used for identification and correlation of lava flows in the field. For twenty lava flows, the thicknesses of upper colonnade zones of eight flows are ∼5 m while those of eight other flows are ∼8 m each. The thicknesses of upper colonnade zones of remaining four flows could not be measured in the field. Using the thicknesses of these upper colonnade zones and standard temperature-flow thickness-cooling time profiles for lava pile, the total cooling time of these sixteen Deccan Trap lava flows has been estimated at 12 to 15 years.  相似文献   

10.
Available literature reveals that little work has been done on the origin of springs in a basaltic terrain. Close examination of such springs in about 2,000 km2 of the upper Koyna River basin in the Deccan Trap country of the Western Ghats (hills), India, reveals that their origins are dependent on the lithologic character of different basaltic flow units and the existing physiography. Although rainfall, its seasonality and areas of recharge, play vital roles in the recharge of these springs, their yields are also controlled by lithological variations and hydraulic characteristics of their source-aquifers. Chemical concentrations of these springs are heavily dependent on the lithological compositions of the source-aquifers and the residence time of groundwater in these aquifers. Currently, basaltic springs are classified with those issuing from other terrains. However, because the emergence of groundwater in the form of springs is largely controlled by the lithology and the resulting water-bearing properties of the formations, a new classification scheme is proposed that classifies the springs on the basis of their source-aquifers. While tapping springs for drinking/irrigation purposes, it must be remembered that they also sustain thousands of other life forms vital to a balanced ecosystem. Changes in the uses of these springs may also affect other human communities downstream. Therefore, before developing spring flow, a trade-off must be made considering local needs and downstream users. Emphasizing only local human needs may lead to severe intercommunity conflict and negative environmental consequences. Electronic Publication  相似文献   

11.
Trachytes and rhyolites from Salsette Island, north of Bombay, have distinctive trace element and isotope features which mark them out from typical crustal melts. Their highly incompatible trace element and Sr-, Nd and Pb isotope ratios are similar to those of the associated Deccan flood basalts. Thus the rhyolites and trachytes are closely related to the basalts, and a striking compositional gap between 50 and 65% SiO2 suggests that the high SiO2 rocks evolved by 10–15% partial melting followed by variable amounts of fractional crystallisation. The source material could have been basalt within the Deccan Trap, or related gabbroic rocks in deep crustal sill complexes. The rhyolites yield an Rb-Sr whole rock age of 61.5±1.9 Ma, with a slightly high initial 87Sr/86Sr=0.7085±18. It is argued that crustal extension provides a suitable regime for the generation of acid magmas by partial melting of associated basic rocks.  相似文献   

12.
Analyses of groundwater samples collected from several locations in a small watershed of the Deccan Trap Hydrologic Province, indicated anomalously higher values of nitrate than the background. However, the NO3 concentrations in water from dug wells under pastureland where the subsurface material consisted of stony waste were minimum. The maximum values were reported for water from dug wells where the principal land use was agricultural. Lowering of NO3 values under shallow water-table conditions suggests denitrification. Higher concentrations of nitrate determined for samples collected from the wells with a deeper water-table indicate that denitrification process is inactive. The high values of nitrate coinciding with agricultural land use indicate fertilizers as the main source of nitrate pollution of ground-water. Decrease in Cl/NO3 ratio for agricultural land use confirms this inference.  相似文献   

13.
Landslide is one of the devastating natural phenomenon that threatens human life and property. Every year a number of persons lost their lives due to the landslides. Therefore, a better understanding and characterization of landslide is very essential for adopting mitigation strategies to contain the adversities of this natural hazard. Information on landslides from different climatic setup are very essential for better understanding of the influence of weathering, rainfall, or topography on landslide generation. Weathering is one of the important causative factor for landslide generation in the moderate topography or inactive mountainous terrain. The Western Ghats including the Deccan Traps, an inactive mountain range, receives torrential rainfall. Intense rainfall in these areas enhances the weathering processes and fabricates thick soil covers. Mahabaleshwar area, Maharashtra was chosen as a case study, where high elevated part is covered by lateritic layer and each lava flow unit is separated by a thin weathered bed of red bole. The area experiences series of landslides during the summer monsoon months. Mainly two types of landslides have been identified in the area confined with the red bole bed and powdery lateritic soil. The first type of landslides occur at higher elevations (≥1200m) where horizontal beds of permeable laterites underlined by impermeable thick basalt beds. The rain water infiltrates down and spread laterally within the permeable lateritic beds. It finally spouts at lower plateau elevations and triggers mainly debris flows. The other category of landslides occurs where the weathered red bole bed separates two successive lava flows. The percolating water from the secondary porosities (joints and inter connected vugs) comes out from the contact zones of basalt and red bole bed in the form of seepages. It erodes the red bole bed and as a result the overlying masses hang and consequently lead to rock fall. The Chemical Index of Alteration (CIA) of the representative samples from landslide locations indicates significant weathering. The CIA values for the fine lateritic soil are up to 98% whereas for the red bole bed it varies from 77 to 85%. This suggests a high chemical weathering and higher erodibility. The association of active landslide locations with the red bole bed and fine lateritic soil suggests a close relation between weathering and landslide occurrences in the area.  相似文献   

14.
Generation of Deccan Trap magmas   总被引:1,自引:0,他引:1  
Deccan Trap magmas may have erupted through multiple centers, the most prominent of which may have been a shield volcano-like structure in the Western Ghats area. The lavas are predominantly tholeiitic; alkalic mafic lavas and carbonatites are rare. Radioisotope dating, magnetic chronology, and age constraints from paleontology indicate that although the eruption started some 68 Ma, the bulk of lavas erupted at around 65–66 Ma. Paleomagnetic constraints indicate an uncertainty of ± 500,000 years for peak volcanic activity at 65 m.y. in the type section of the Western Ghats. Maximum magma residence times were calculated in this study based on growth rates of “giant plagioclase” crystals in lavas that marked the end phase of volcanic activity of different magma chambers. These calculations suggest that the > 1.7 km thick Western Ghats section might have erupted within a much shorter time interval of ∼ 55,000 years, implying phenomenal eruption rates that are orders of magnitude larger than any present-day eruption rate from any tectonic environment. Other significant observations/conclusions are as follows: (1) Deccan lavas can be grouped into stratigraphic subdivisions based on their geochemistry; (2) While some formations are relatively uncontaminated others are strongly contaminated by the continental crust; (3) Deccan magmas were produced by 15–30% melting of a Fe-rich lherzolitic source at ∼ 3–2 GPa; (4) Parent magmas of the relatively uncontaminated Ambenali formation had a primitive composition with 16%MgO, 47%SiO2; (5) Deccan magmas were generated much deeper and by significantly more melting than other continental flood basalt provinces; (6) The erupted Deccan tholeiitic lavas underwent fractionation and magma mixing at ∼ 0.2 GPa. The composition and origin of the crust and crust/mantle boundary beneath the Deccan are discussed with respect to the influence of Deccan magmatic episode.  相似文献   

15.
Dongre  Ashish  Viljoen  K. S.  Rathod  A. 《Mineralogy and Petrology》2018,112(2):267-277
Mineralogy and Petrology - Constituent mineral compositions and whole rock major element geochemistry of picro-dolerite dykes from the central part of the Deccan flood basalt province are presented...  相似文献   

16.
《Gondwana Research》2002,5(3):649-665
The Mandla lobe in the eastern part of the Deccan volcanic province represents an isolated lava pile having a thickness of ∼900 m. The large thickness of this lava pile and its spatial detachment from the western Deccan outcrop points to a plausible second source. The stratigraphic configuration of the central and eastern Deccan lava sequences and their possible stratigraphic correlation are primarily based on geology and chemical signatures of the lava flows. Based on variations in the incompatible element ratios, the lava sequences of Chindwara, Jabalpur-Seoni and Jabalpur-Piparia sections were classified into four informal formations showing similarity with the southwestern formations. Major and trace element abundances in fifteen lava flows of Jabalpur area are similar to that of the southwestern Deccan lava flows. It has been found that the Ambenali Fm. and a few Khandala and Bushe Fm. flows are present in the northeastern Deccan. The regional mapping and detailed petrographic studies coupled with the lateral tracing have enabled the recognition of thirty-seven physically distinct lava flows and is justified by their major-elemental chemistry. The ‘intraflow variations’ studied in some of the flows is very low for most of the major oxides. These thirty-seven lava flows are grouped into eight chemical types. The order of superposition in this sequence reflects that the older flows occur in the west of the outlier at the Seoni-Jabalpur-Sahapura sector whereas, the younger flows are confined to the Dindori-Amarkantak sector in the east. The spatial disposition of the lava flows suggests that the structural complexity in the lava flow sequence in the Mandla lobe lies between Jabalpur and Dindori. The juxtaposition of distinct groups of lava flows are observed near Deori (flows 1 to 4 abeted aginst flows 5 to 14) and Dindori areas. At Dindori and towards its south the distinct lava packages (flows 15 to 27 and flows 28 to 37) are juxtaposed along the course of Narmada river. The possible explanation for this could be the presence of four post-Deccan faults at Nagapahar, Kundam, Deori and Dindori areas. The vertical shift of chemically distinct lava packages at different sectors in the outlier contravenes the idea of small regional dip and favours the presence of four NE-SW trending post-Deccan faults. Major geochemical breaks, when traced out from section to section, exhibit shifting in heights by approximately 150 m near Nagapahar and 300 m near Deori and Dindori areas. The field, petrographic and major-oxide data sets considered in conjuction with the magnetic chron reversal heights, support the inference that four faults trending NE-SW are present in the Mandla lobe.A commonality in the mineralo-chemical attributes of the infra (Lametas)-/inter-trappean as well as weathered Deccan basalt further favours their derivation from Deccan basalt, implying the availability of Deccan basalt during the Maastrichtian Lameta sedimentation. This observation does not match with the models suggesting an extremely short duration of Deccan volcanism (<0.5 Ma) at the KTB, but is congruent with the models advocating a more prolonged Deccan volcanism.  相似文献   

17.
The crustal depth section obtained from deep seismic soundings along the Koyna II (Kelsi-Loni) profile, which lies near latitude 18°N roughly in the east-west direction in that part of the Deccan Trap Maharashtra State, India, shows a number of reflection segments below the Deccan Traps down to the Moho discontinuity. A deep fault below the Deccan Traps 13 km east of Mahad divides the entire cross-section including the Moho boundary into two crustal blocks. The reflection segments show updip towards the west coast in the western block. The Moho discontinuity which is at a depth of 39 km near the deep fault starts rising towards the coast, reaching a depth of 31.5 km at the west coast. The eastern block is thrown up by 1.5 km with respect to the western block along the deep fault. A structural contour map of the Moho discontinuity for the Koyna reservoir area has been prepared from the present results and the crustal information obtained along the Koyna I profile (Kaila et al., 1979a), shows that the deep fault in the Koyna area is aligned in the NNW-SSE direction.Refraction seismic data analysis by the wave front method reveals that the thickness of the Deccan Trap increases towards the west coast. The Deccan Trap is 600–700 m thick in the eastern region between Nira (SP 130) and Loni (SP 200) and attains a thickness of 1500 m at 10 km east of the west coast. The longitudinal wave velocity in the Deccan Traps along the profile varies from 4.8 to 5.0 km/sec and in the crystalline basement from 6.0 to 6.15 km/sec. A tentative isopach contour map of the Deccan Traps and a tentative structural contour map of the Pre-Deccan Trap contact have been prepared for the Koyna reservoir area from the results along the Koyna II and Koyna I profiles. A flexure aligned in a NNW-SSE direction, in the Pre-Deccan Trap contact, which is an expression of the deep fault into the basement, has been clearly brought out. The flexure coincides in general with the orientation of the Deccan volcanic scarp in this area.  相似文献   

18.
Chemical compositions of segregation veins in basalt flows arecompared with those of their host rocks for tracing fractionationtrends of magmas after extrusion. In some tholeiite of Hawaiiand Japan and in Warner high-alumina basalt of California, totaliron increases markedly during fractionation while SiO2 is nearlyconstant. In tholeiite near Catania, Sicily, both total ironand SiO2 increase during fractionation. In high-alumina basaltof Huzi Volcano, Japan, and in some basaltic andesites of thehypersthenic rock series or calc-alkali rock series of Californiaand Japan, total iron is nearly constant or decreases slightlywhile SiO2 increases. The trend with marked increase of ironis seen in flows with lower Fe2O3/FeO ratio, whereas that withconstant iron is seen in flows with higher Fe2O3/FeO. Thus thedifferent trends may arise largely from difference in oxygenpartial pressure of the magmas during fractionation. The higheroxygen pressure may be caused by higher initial water contentof the magmas. It is also noticed that residual liquids havingthe chemistry and mineralogy of the hypersthenic rock seriesoriginate only from magmas which separate orthopyroxene duringextrusion. This fact is also explained as due to the high watercontent of the magma of this series by which the crystallizationtemperature is lowered.  相似文献   

19.
A.G. Dessai  A. Markwick  H. Downes 《Lithos》2004,78(3):263-290
Granulite and pyroxenite xenoliths in lamprophyre dykes intruded during the waning stage of Deccan Trap volcanism are derived from the lower crust beneath the Dharwar craton of Western India. The xenolith suite consists of plagioclase-poor mafic granulites (55% of the total volume of xenoliths), plagioclase-rich felsic granulites (25%), and ultramafic pyroxenites and websterites (20%) with subordinate wehrlites. Rare spinel peridotite xenoliths are also present, representing mantle lithosphere. The high Mg #, low SiO2/Al2O3 and low Nb/La (<1) ratios suggest that the protoliths of the mafic granulites broadly represent cumulates of sub-alkaline magmas. All of the granulites are peraluminous and light rare-earth element-enriched. The felsic granulites may have resulted from anatexis of the mafic lower crustal rocks; thus, the mafic granulites are enriched in Sr whereas the felsic ones are depleted. Composite xenoliths consisting of mafic granulites traversed by veins of pyroxenite indicate intrusion of the granulitic lower crust by younger pyroxenites. Petrography and geochemistry of the latter (e.g. presence of phlogopite) indicate the metasomatised nature of the deep crust in this region.Thermobarometric estimates from phase equilibria indicate equilibration conditions between 650 and 1200 °C, 0.7-1.2 GPa suggestive of lower crustal environments. These estimates provide a spatial context for the sampled lithologies thereby placing constraints on the interpretation of geophysical data. Integration of xenolith-derived P-T results with Deep Seismic Soundings (DSS) data suggests that the pyroxenites and websterites are transitional between the lower crust and the upper mantle. A three-layer model for the crust in western India, derived from the xenoliths, is consistent with DSS data. The mafic nature of this hybrid lower crust contrasts with the felsic lower crustal composition of the south Indian granulite terrain.  相似文献   

20.
《International Geology Review》2012,54(12):1094-1116
Rhyolite, trachyte, pitchstone, and granophyre dikes are associated with mafic dolerite dikes and basaltic flows of the northwestern part of the Deccan flood basalt province in the Saurashtra Peninsula, India. Felsic dikes, exposed in the Rajula area of Saurashtra, are similar in age to the basaltic flows of neighboring Palitana. The ages of both the felsic and mafic rocks straddle the ~65 Ma Cretaceous-Tertiary boundary and correspond to the main Deccan flood basalt episode. Palitana is centered on an elongated gravity high whose major axis is NE-SW, and Rajula is located on its southwestern flank. Unlike the younger Bombay felsic rocks from the western coast of India, which have been explained as partial melts of gabbros in deep crustal sills or previously erupted basalts, the incompatible-element characteristics of the Rajula rocks indicate that the Rajula rhyolites, trachytes, and dacites may have been generated by an almost complete melting of upper crustal rocks at the southwestern flank of the Rajula-Palitana-Sihor magmatic body. High potential temperatures of the Deccan plume, quick migration of the hot basaltic parent magma through lithospheric weak trends, and collection and residence of magma in upper-crustal magma chambers before eruption may have produced the right conditions to melt the upper crust in the vicinity of the Rajula-Palitana-Sihor magma chamber. On the other hand, the andesite located northeast of the magmatic body possibly evolved by assimilation of upper-crustal wall rocks accompanied by 5-10% crystallization of a Rajula-type basalt near the wall of the magma chamber. The Sihor rhyolites may also have been derived from the Sihor basalts through fractional crystallization accompanied by crustal assimilation. The Rajula granophyres, however, do not show any involvement of the upper crust in their genesis. These may have a history similar to that of the Bombay rocks and may have erupted in response to rifting along the Cambay rift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号