首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectral observations of 10 FBS blue stellar objects (BSO) with the OHP 1.93-m and BAO 2.6.m telescopes are reported, and overall progress in all the spectral observations and classifications of FBS BSO over 1987–2000 and in the classification of these objects based on all the accessible sources-- in all, 753 out of 1103 objects-- is discussed. Representative slit spectra for the major types of objects are presented and compared with digitized low dispersion spectra from the DFBS. The nature of the FBS objects is examined in terms of advances in the spectral studies. Two-color diagrams are constructed from the SDSS data and are used to find the regions occupied by the various types for further identification of objects of unknown type. Translated from Astrofizika, Vol. 52, No. 1, pp. 85–97 (February 2009).  相似文献   

2.
Automated techniques have been developed to automate the process of classification of objects or their analysis. The large datasets provided by upcoming spectroscopic surveys with dedicated telescopes urges scientists to use these automated techniques for analysis of such large datasets which are now available to the community. Sloan Digital Sky Survey (SDSS) is one of such surveys releasing massive datasets. We use Probabilistic Neural Network (PNN) for automatic classification of about 5000 SDSS spectra into 158 spectral type of a reference library ranging from O type to M type stars.  相似文献   

3.
By means of a batch of low-redshift spectral data of AGNs taken from the SDSS, an automated K-nearest neighbor method is developed to classify AGNs into two types: broad-line and narrow-line AGNs. According to the different characteristics of emission lines of broad-line and narrow-line AGNs, the spectral wavebands containing the Hβ, [OIII], H and [NII] emission lines are used separately or in combination in the classification. experiment. The results show that the best results are obtained when only the wavebands of H and [NII] are used, and that for a training set of size 1000 and a testing set of 3313, we can achieve a speed of 32.89 single classifications per second. It is demonstrated that, where the typical spectral features are sufficiently exploited, the automated classification method is feasible for the spectra of AGNs in largescale spectral surveys and provides a fast and straightforward alternative to classification schemes based on using the FWHM values of emission lines or the line strength ratio diagnostic diagrams.  相似文献   

4.
We have classified a sample of 37,492 objects from SDSS into QSOs, galaxies and stars using photometric data over five wave bands (u, g, r, i and z) and UV GALEX data over two wave bands (near-UV and far-UV) based on a template fitting method. The advantage of this method of classification is that it does not require any spectroscopic data and hence the objects for which spectroscopic data is not available can also be studied using this technique. In this study, we have found that our method is consistent by spectroscopic methods given that their UV information is available. Our study shows that the UV colours are especially important for separating quasars and stars, as well as spiral and starburst galaxies. Thus it is evident that the UV bands play a crucial role in the classification and characterization of astronomical objects that emit over a wide range of wavelengths, but especially for those that are bright at UV. We have achieved the efficiency of 89% for the QSOs, 63% for the galaxies and 84% for the stars. This classification is also found to be in agreement with the emission line diagnostic diagrams.  相似文献   

5.
Planetary transits detected by the CoRoT mission can be mimicked by a low‐mass star in orbit around a giant star. Spectral classification helps to identify the giant stars and also early‐type stars which are often excluded from further follow‐up. We study the potential and the limitations of low‐resolution spectroscopy to improve the photometric spectral types of CoRoT candidates. In particular, we want to study the influence of the signal‐to‐noise ratio (SNR) of the target spectrum in a quantitative way. We built an own template library and investigate whether a template library from the literature is able to reproduce the classifications. Including previous photometric estimates, we show how the additional spectroscopic information improves the constraints on spectral type. Low‐resolution spectroscopy (R ≈ 1000) of 42 CoRoT targets covering a wide range in SNR (1–437) and of 149 templates was obtained in 2012–2013 with the Nasmyth spectrograph at the Tautenburg 2 m telescope. Spectral types have been derived automatically by comparing with the observed template spectra. The classification has been repeated with the external CFLIB library. The spectral class obtained with the external library agrees within a few sub‐classes when the target spectrum has a SNR of about 100 at least. While the photometric spectral type can deviate by an entire spectral class, the photometric luminosity classification is as close as a spectroscopic classification with the external library. A low SNR of the target spectrum limits the attainable accuracy of classification more strongly than the use of external templates or photometry. Furthermore we found that low‐resolution reconnaissance spectroscopy ensures that good planet candidates are kept that would otherwise be discarded based on photometric spectral type alone. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The sample of Byurakan–IRAS galaxies (BIG) has been created based on optical identifications of IRAS Point Source Catalog (PSC) at high galactic latitudes. As a result, 1178 galaxies have been identified. 172 of them have been observed spectroscopically with Byurakan Astrophysical Observatory (BAO, Armenia) 2.6 m, Special Astrophysical Observatory (SAO, Russia) 6m and Observatoire de Haute Provence (OHP, France) 1.93 m telescopes. Later on, spectra were obtained for more 83 BIG objects in Sloan Digital Sky Survey (SDSS). We have extracted and studied these spectra, classified them and measured spectral features. Diagnostic diagrams have been built to distinguish starbursts (SB), LINERs and Seyfert galaxies. Cross-correlations weremade for these objects with multiwavelength (MW) catalogues and their physical properties were studied. Among these 83 objects, 55 HII, 8 Seyfert galaxies, 2 LINERs, 4 other AGN, 6 composite spectrum objects, and 8 other emission-line galaxies have been revealed. Three of these objects are Ultra-Luminous InfraRed Galaxies (ULIRG).  相似文献   

7.
This paper presents the results of optical spectroscopic observations of two ROSAT bright sources, 1RXS J020928.9 283243 and 1RXS J042332.8 745300. The low-dispersion spectra suggest the cataclysmic variable classification for the two objects.Further photometric observations are expected to reveal the variable features and to confirm the classifications.  相似文献   

8.
A list of emission lines in the spectra of solar flares between 6 Å and 25 Å has been compiled using data obtained with a KAP crystal spectrometer on the OSO-5 satellite. The emission lines have been classified according to their sensitivity to flare activity. This classification provides a method for discriminating between iron in high stages of ionization (Fe xx-Fe xxv) and lower stages (Fe xvii- Fe xix), the lines of which are both present in the same spectral region during flares. Identifications consistent with these classifications are proposed. Anomalous intensities in the spectra of Fe xvii and Fe xx are pointed out, and implications of the observations for models of the X-ray emitting regions are discussed.  相似文献   

9.
The rapid development of large-scale sky survey project has produced a large amount of stellar spectral data, which make the automatic classification of stellar spectral data a challenging task. In this paper, we have proposed a stellar spectral classification method based on a capsule network. At first, by using the one-dimensional convolutional network and short-time Fourier transform (STFT), the one-dimensional spectra of the F5, G5, and K5 types selected from the LAMOST Data Release 5 (DR5) are converted into the two-dimensional Fourier spectrum images. Then, the two-dimensional Fourier spectrum images are classified automatically by the capsule network. Because the capsule network can preserve the hierarchical pose relationships among the entities in the image, and it does not need any pooling layers, the experimental results show that the capsule network has a better classification performance, for the classifications of the F5, G5, and K5-type stellar spectra, its classification accuracy is superior to other classification methods.  相似文献   

10.
We present a number of spectra of Near-Earth Objects taken in the period 1998-2003 with two different instruments (CGS4 and UIST) on the UKIRT telescope. Since observations with CGS4 require multiple spectral fragments to be observed sequentially and then spliced together we assess the reliability of this technique using comparisons between multiple observations of the same object, between observations of the same object with both instruments and with independent spectra of common objects. We conclude that while problems in the spectral splicing can occur, they are usually intuitively obvious and that overall our dataset is sound. The objects for which we present new spectral data are: 1627 Ivar, 4179 Toutatis, 5381 Sekhmet, (5587) 1990 SB, 6489 Golevka, (11405) 1999 CV3, (14402) 1991 DB, 25143 Itokawa, (25330) 1999 KV4, (52760) 1998 ML14, (66391) 1999 KW4, and (101955) 1999 RQ36. Our results, together with albedo data from the literature, suggest carbonaceous compositions for 25330 and 101955. The available data for 14402 suggest it may belong to the relatively rare M class. Our analysis suggests an S or Sq classification for 52760 and a V classification for 5381 Sekhmet. For all remaining objects the UKIRT data are consistent with published spectral classifications. We find that only 3 of the 12 objects are not S/Q/V-class, which is roughly consistent with the results of Binzel et al. [Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H., 2004. Icarus 170, 259-294]. Four spectra of Toutatis taken over a range of solar phase angles between 0.7°-81° and at intervals of several weeks are indistinguishable within the uncertainties and therefore do not reveal any evidence for phase reddening or surface variegation.  相似文献   

11.
Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with i-band magnitudes brighter than 19.5 and redshifts between 2.4 and 4.6 from spectroscopy with the Yunnan Faint Object Spectrograph and Camera (YFOSC) at the Lijiang 2.4 m telescope in February, 2012. These quasars are in the list of z > 3.6 quasar candidates selected by using our proposed J K/i Y criterion and the photometric redshift estimations from the SDSS optical and UKIDSS near-IR photometric data. Nine candidates were observed by YFOSC, and five among six new quasars were identified as z > 3.6 quasars. One of the other three objects was identified as a star and the other two were unidentified due to the lower signal-to-noise ratio of their spectra. This is the first time that z > 4 quasars have been discovered using a telescope in China. Thanks to the Chinese Telescope Access Program (TAP), the redshift of 4.6 for one of these quasars was confirmed by the Multiple Mirror Telescope (MMT) Red Channel spectroscopy. The continuum and emission line properties of these six quasars, as well as their central black hole masses and Eddington ratios, were obtained.  相似文献   

12.
The chemically peculiar (CP) stars of the upper main sequence are perfect tracers for several astrophysical processes. Their study especially in open clusters further helps to establish their evolutionary status. The latter is most important to understand the origin and evolution of the CP phenomenon, i.e. the connection between diffusion and a stellar magnetic field. There are two important topics, we cover with this paper. First of all, we investigate the reliability of the CCD Δa photometry for fainter objects in open clusters. The latter method is able to detect CP stars very efficiently, but still a spectroscopic verification is needed to verify the photometric candidates. On the other hand, already published spectral classifications on the basis of photographic plates and prism technology have tobe tested with modern instruments. Classification resolution spectroscopy is presented for thirty five bona‐fide CP candidates. Twenty six of them are located within the boundaries of fourteen open clusters, for which we also investigated their membership probabilities. Apart from five objects, they seem tobe members of the respective clusters. The objects were classified in the framework of a refined Morgan‐Keenan system with the extension of well established CP star spectra. We confirm the CP nature of all but one target. The results of Δa photometry and the spectral classifications are in excellent agreement. For the cluster members we find a continuous sequence of CP stars from 10 to 850 Myr, the whole range of investigated cluster ages (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A.S Rivkin  R.P Binzel  S.J Bus 《Icarus》2003,165(2):349-354
Mars is the only terrestrial planet known to have co-orbiting “Trojan” asteroids. We have obtained visible and near-IR reflectance spectra of three of these objects: 5261 Eureka and 1998 VF31 in the L5 region and 1999 UJ7 in the L4 region. We also obtained JHK spectrophotometry and a visible lightcurve for 5261 Eureka. The asteroid 5261 Eureka has a visible spectrum that is classified as Sr in the Bus taxonomy, and has infrared colors consistent with the A-class asteroids. The data for 1998 VF31 have a restricted wavelength range, but are most consistent with the Sr or Sa class, though we note a marginal consistency with the D class. We can rule out a C-class classification. 1999 UJ7 has an X-class or T-class spectrum, which is unlike that of the other two Mars Trojans. The photometric data for Eureka are limited, but we can constrain the period to longer than 5 hours (likely 5.5-6 hours) and lightcurve amplitude of at least 0.15 magnitude at this viewing geometry. The spectral differences among the Mars Trojans suggests that either they did not all form at their present solar distances or that they have not always been at their present sizes.  相似文献   

14.
With the help of computer tools and algorithms, automatic stellar spectral classification has become an area of current interest. The process of stellar spectral classification mainly includes two steps: dimension reduction and classification. As a popular dimensionality reduction technique, Principal Component Analysis (PCA) is widely used in stellar spectra classification. Another dimensionality reduction technique, Locality Preserving Projections (LPP) has not been widely used in astronomy. The advantage of LPP is that it can preserve the local structure of the data after dimensionality reduction. In view of this, we investigate how to apply LPP+SVM in classifying the stellar spectral subclasses. In the comparative experiment, the performance of LPP is compared with PCA. The stellar spectral classification process is composed of the following steps. Firstly, PCA and LPP are respectively applied to reduce the dimension of spectra data. Then, Support Vector Machine (SVM) is used to classify the 4 subclasses of K-type and 3 subclasses of F-type spectra from Sloan Digital Sky Survey (SDSS). Lastly, the performance of LPP+SVM is compared with that of PCA+SVM in stellar spectral classification, and we found that LPP does better than PCA.  相似文献   

15.
Subdwarf B stars (sdBs) can significantly change the ultraviolet spectra of populations at age t~1 Gyr, and have been even included in the evolutionary population synthesis (EPS) models by Han et al. (Mon. Not. R. Astron. Soc. 380:1098, 2007). In this study we present the spectral energy distributions (SEDs) of binary stellar populations (BSPs) by combining the EPS models of Han et al. (Mon. Not. R. Astron. Soc. 380:1098, 2007) and those of the Yunnan group (Zhang et al. in Astron. Astrophys. 415:117, 2004; Mon. Not. R. Astron. Soc. 357:1088, 2005), which have included various binary interactions (except sdBs) in EPS models. This set of SEDs is available upon request from the authors. Using this set of SEDs of BSPs we build the spectra of Burst, E, S0–Sd and Irr types of galaxies by using the package of Bruzual and Charlot (Mon. Not. R. Astron. Soc. 344:1000, 2003). Combined with the photometric data (filters and magnitudes), we obtain the photometric redshifts and morphologies of 1502 galaxies by using the Hyperz code of Bolzonella et al. (Astron. Astrophys. 363:476, 2000). This sample of galaxies is obtained by removing those objects, mismatched with the SDSS/DR7 and GALEX/DR4, from the catalogue of Fukugita et al. (Astron. J. 134:579, 2007). By comparison the results with the SDSS spectroscopic redshifts and the morphological index of Fukugita et al. (Astron. J. 134:579, 2007), we find that the photo-z fluctuate with the SDSS spectroscopic redshifts, while the Sa–Sc galaxies in the catalogue of Fukugita et al. (Astron. J. 134:579, 2007) are classified earlier as Burst-E galaxies.  相似文献   

16.
With a recently constructed composite quasar spectrum and the X2 minimization technique, we describe a general method for estimating the photometric redshifts of a large sample of quasars by deriving theoretical color-redshift relations and comparing the theoretical colors with the observed ones. We estimated the photometric redshifts from the 5-band SDSS photometric data of 18678 quasars in the first major data release of SDSS and compared them with their spectroscopic redshifts. The difference is less than 0.1 for 47% of the quasars and less than 0.2 for 68%. Based on the calculation of the theoretical color-color diagrams of stars, galaxies and quasars both on the SDSS system and on the BATC system, we expect that we would be able to select candidates of high redshift quasars more efficaciously with the latter than with the former, provided the BATC survey can detect objects with magnitudes fainter than 21.  相似文献   

17.
The use of photometric redshifts in cosmology is increasing. Often, however these photo- z are treated like spectroscopic observations, in that the peak of the photometric redshift, rather than the full probability density function (PDF), is used. This overlooks useful information inherent in the full PDF. We introduce a new real-space estimator for one of the most used cosmological statistics, the two-point correlation function, that weights by the PDF of individual photometric objects in a manner that is optimal when Poisson statistics dominate. As our estimator does not bin based on the PDF peak, it substantially enhances the clustering signal by usefully incorporating information from all photometric objects that overlap the redshift bin of interest. As a real-world application, we measure quasi-stellar object (QSO) clustering in the Sloan Digital Sky Survey (SDSS). We find that our simplest binned estimator improves the clustering signal by a factor equivalent to increasing the survey size by a factor of 2–3. We also introduce a new implementation that fully weights between pairs of objects in constructing the cross-correlation and find that this pair-weighted estimator improves clustering signal in a manner equivalent to increasing the survey size by a factor of 4–5. Our technique uses spectroscopic data to anchor the distance scale and it will be particularly useful where spectroscopic data (e.g. from BOSS) overlap deeper photometry (e.g. from Pan-STARRS, DES or the LSST). We additionally provide simple, informative expressions to determine when our estimator will be competitive with the autocorrelation of spectroscopic objects. Although we use QSOs as an example population, our estimator can and should be applied to any clustering estimate that uses photometric objects.  相似文献   

18.
The spectral type is a key parameter in calibrating the temperature which is required to estimate the mass of young stars and brown dwarfs. We describe an approach developed to classify low-mass stars and brown dwarfs in the Trapezium Cluster using red optical spectra, which can be applied to other star-forming regions. The classification uses two methods for greater accuracy: the use of narrow-band spectral indices which rely on the variation of the strength of molecular lines with spectral type and a comparison with other previously classified young, low-mass objects in the Chamaeleon I star-forming region. We have investigated and compared many different molecular indices and have identified a small number of indices which work well for classifying M-type objects in nebular regions. The indices are calibrated for young, pre-main-sequence objects whose spectra are affected by their lower surface gravities compared with those on the main sequence. Spectral types obtained are essentially independent of both reddening and nebular emission lines.
Confirmation of candidate young stars and brown dwarfs as bona fide cluster members may be accomplished with moderate resolution spectra in the optical region by an analysis of the strength of the gravity-sensitive Na doublet. It has been established that this feature is much weaker in these very young objects than in field dwarfs. A sodium spectral index is used to estimate the surface gravity and to demonstrate quantitatively the difference between young (1–2 Myr) objects, and dwarf and giant field stars.  相似文献   

19.
The development and application of new methods for intelligent analysis and extraction of information from digital sky surveys carried out in various spectral domains have now become a popular field in astrophysical research and, in particular, in stellar studies. Modern large-scale photometric surveys provide data for 105–106 relatively faint objects, and the lack of spectroscopic data can be compensated by the cross identification of the objects followed by an analysis of all catalogued photometric data. In this paper we investigate the possibility of determining the effective temperature, surface gravity, total extinction, and the total-to-selective extinction ratio based on the photometry provided in the 2MASS, SDSS, and GALEX surveys, and estimate the accuracy of the inferred parameters. We use a library of theoretical spectra to compute the magnitudes of stars in the photometric bands of the above surveys for various sets of input parameters. We compare the differences between the computed magnitudes with the errors of the corresponding surveys. We find that stellar parameters can be computed over a sizable domain of the parameter space. We estimate the accuracy of the resulting parameters. We show that the presence of far-ultraviolet data in the available set of observed magnitudes increases the accuracy of the inferred parameters.  相似文献   

20.
We report on the results of the spectroscopy of 10 objects previously classified as brown dwarf candidates via RIJHK colors by Eisenbeiss et al. (2009), who performed deep imaging observations on a ∼0.4 sq.deg. field at the edge of the Pleiades. We describe and judge on classification techniques in the region of M‐type stars. To classify and characterise the objects, visual and near infrared spectra have been obtained with VLT FORS and ISAAC. The spectral classification was performed using the shape of the spectra as well as spectral indices that are sensitive to the spectral type and luminosity class of M‐type stars and late M‐type brown dwarfs. Furthermore a spectrophotometric distance was calculated and compared the distance of the Pleiades to investigate the membership probability. As a second argument we analyzed the proper motion. The brown dwarf candidates were found not to be brown dwarfs, but late‐K to mid‐M‐type dwarf stars. Based on the obtained distance and tabulated proper motions we conclude that all objects are background dwarf stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号