首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1 INTRODUCTION With advances in computer technology and numerical methods, three-dimensional (3D) mathematical models for sediment transport are gradually applied more often and for more practical projects of hydraulic engineering. Three-dimensional mathematical river models can describe not only the secondary flow, but also the transport, deposition, and erosion of sediment in the river channel and the flood plain. However, at present the theories of sediment transport are not as well de…  相似文献   

2.
In this paper the researches made in 1981-1990 have identified that the annual soil loss in the Three Gorges region is 157 million t. and the annual incoming sediment load of the Three Gorges reservoir is 40 million t. Soil erosion increases with the destruction of vegetative cover and its subsequent evolution. The annual amounts of sediment erosion for forest land, shrub land, grassland and farmland make up respectively 6.19%, 10.76%, 23.05% and 60% of the total erosion of the Three Gorges region; the quantities of incoming sediment load to the Yangtze River from the above four types of land account for 5.95%, 12.42%, 35.46% and 46.1 % of the total amount of sediment transported to the reservoir. The farmland of offers the main source of sediment. Gravitational erosion produces more bed loads, which will present serious threat to the Three Gorges Project if entering the reservoir. Resettlement of people to the upper parts of the mountainous areas for agricultural production will increase the sediment yield of the Three Gorges region by 10-20 million t and increase the incoming sediment of the Yangtze River by 50-60 million t. Consequently, it is necessary to make a realistic assessment of the soil erosion in the Three Gorges region.  相似文献   

3.
The characteristics of water flow and sediment transport in a typical meandering and island-braided reach of the middle Yangtze River is investigated using a two-dimensional (2D) mathematical model. The major problems studied in the paper include the carrying capacity for suspended load, the incipient velocity and transport formula of non-uniform sediment, the thickness of the mixed layer on the riverbed, and the partitioning of bed load and suspended load. The model parameters are calibrated using extensive field data. Water surface profiles, distribution of flow velocities, riverbed deformation are verified with site measurements. The model is applied to a meandering and island-braided section of the Wakouzi-Majiazui reach in the middle Yangtze River, which is about 200 km downstream from the Three Gorges Dam, to study the training scheme of the navigation channels. The model predicts the processes of sediment deposition and fiver bed erosion, changes of flow stage and navigation conditions for the first 20 years of impoundment of the Three Gorges Project.  相似文献   

4.
PREDICTIONOFIMPACTOFTHETHREEGORGESPROJECTONESTUARYBEACHOFTHEYANGTZERIVERWeibingFENG1YigangWANG2andXiuchengZHONG3ABSTRACTAltho...  相似文献   

5.
Sediment supply to the lower Jingjiang River will be subject to substantial reduction after the impoundment of the Three Gorges Reservoir, which could result in an excess of carrying capacity and serious bank erosions in the downstream alluvial channel, threatening the bank protection works and the safety of the Jingjiang Dyke. This paper presents a summary of research works concerning the fluvial processes in the lower Jingjiang River and the possible impact of the Three Gorges Reservoir impoundment on the variation of its channel pattern. Three different predictions have been put forward by researchers: 1) the Jingjiang River will evolve towards a more sinuous, meandering channel pattern, with extensive bank erosion taking place along the river; 2) the river channel will be straightened and broadened because no point bar can be formed due to reduced sediment supply while bank erosion develops in the concave bank, and 3) this river reach will maintain its present channel pattern without significant change, although the sinuosity may be slightly reduced, since: a) the Three Gorges Reservoir mainly intercept sediment particles with sizes larger than 0.025mm, and b) the complex interaction between the Yangtze River and the Dongting Lake helps to reduce the negative effect of channel erosion through certain self-adjusting mechanism in fluvial processes. Discrepancy between these predictions shows that further research efforts are needed to understand the impact of Three Gorges Reservoir operation on the downstream fluvial processes. Meanwhile, there is an urgent need to closely monitor future development in the fluvial processes of the Jingjiang River and its influence on the safety of the Jingjiang Dykes.  相似文献   

6.
《国际泥沙研究》2022,37(5):639-652
The Jinsha River comprises the upper reaches of the Yangtze River, which is the river section with the highest sediment content. Monitoring of sediment transport in the Jinsha River is done to the guarantee for the normal operation of the Three Gorges Reservoir. In the current study, a copula function was used to do a joint probability analysis of the water and sediment in the Jinsha River Basin (JRB), further a sediment load prediction model based on the copula function also was constructed. The results show that the average annual flow from 2001 to 2018 at the outlet of the Jinsha River (Yibin station) is about 60.43 billion m3, and the average annual sediment load is about 58.82 million t. The linear correlation coefficient between annual flow and annual sediment load is 0.28. The best marginal distribution for annual flow and sediment load is Pearson Type Three (PE3) and Generalized Normal (GNO), respectively, and the best fit for the combined distribution of the two variables is the Frank copula function. The synchronous probability of water and sediment occurrence is 0.459, and the asynchronous probability is 0.541. Based on the copula prediction model, the sediment load can be effectively simulated, and the correlation coefficient between the simulated sequence and the measured sequence reached 0.93. The current study provides important significance for the analysis of water and sediment in the JRB, which is beneficial to the management of Three Gorges Reservoir sediment discharge in the upstream and downstream.  相似文献   

7.
The Three Gorges Project is one of the largest hydro-projects in the world and has drawn many debates inside China and abroad. The major concern is that sediment load from the river basin may eventually fail the functions of the project for flood control and power generation. To reduce sedimentation in the reservoir, watershed management has been adopted. However, there is limited information regarding the effectiveness of various control measures such as terracing and afforestation on a watershed scale. The Jialing River, a main tributary of the Yangtze River, contributes approximately 25% of the total sediment load in the main river but only represents 8% of the whole basin area. There have been various land use patterns and extensive human activities for thousands of years in the Jialing River watershed. Based on analysis of the major factors affecting erosion in the Jialing River watershed, the main watershed management strategies (afforestation, farming and engineering practice) are illustrated, and their effects on the reduction of sediment and runoff are studied in detail. The sediment budget of the watershed shows that 1/3 of the sediment yield is trapped by the erosion control measures (afforestation and farming) on the slope, 1/3 is trapped by the reservoirs, ponds and dams within the watershed, and only about 1/3 is transported into the Yangtze River, which will affect the Three Gorges Project.  相似文献   

8.
1 INTRODUCTION Large-scale flood disasters have frequently occurred in the middle Yangtze River since the 1990抯. The Jingjiang River and Dongting Lake (Fig. 1) comprise the most serious area of flood disasters. The main characteristic of recent disasters is low discharge and high water stage. Recent research has begun to pay more attention to the important role of sediment deposition (Li and Ni, 1998). Though the Yangtze River is not an overloaded river, the amount of sediment trans…  相似文献   

9.
The construction of hydropower projects,such as Xiluodu and Xiangjiaba Reservoirs,in the upper Yangtze River will lead to variations of the incoming water and sediment conditions and in turn changes in the deposition and erosion processes in the fluctuating backwater reach of the Three Gorges Project(TGP).In this paper,based on the water and sediment characteristics,a 2D mathematical model in the boundary-fitting orthogonal curvilinear coordinate system has been employed to predict the space-time changes of...  相似文献   

10.
泥沙问题是三峡工程建设与运行中的关键技术问题之一,只有妥善处理好泥沙问题,才能保证三峡工程长期有效使用,维持水库功能的全面发挥。本文首先结合实测水文、河道地形观测资料,对三峡水库运行近20年来的泥沙淤积特性及水库排沙比进行了较为全面的分析研究,并与已有研究成果进行了对比;其次,围绕防洪、航运以及坝前段的泥沙淤积等方面,进一步分析了水库淤积产生的影响。结果表明:三峡水库蓄水以来,在不考虑区间来沙的情况下,三峡水库共淤积泥沙20.484亿t,近似年均淤积1.102亿t,水库排沙比为23.6%,水库年均淤积量为原论证预测值的33%。其中,库区干流段累计淤积泥沙17.835亿m3(变动回水区冲刷0.694亿m3;常年回水区淤积18.529亿m3),淤积在水库防洪库容内的泥沙为1.648亿m3(干、支流分别淤积1.517亿m3和0.131亿m3),占水库防洪库容的0.74%,“十一五”攻关阶段研究得出的多年平均淤积量及排沙比较实测值均偏大,变动回水区冲淤则出现反向的...  相似文献   

11.
《水文科学杂志》2013,58(2):457-465
Abstract

Periodicity of the runoff and the sediment load, and possible impacts from human activities and climatic changes, in the Yangtze River basin during 1963–2004 are discussed based on the monthly sediment and runoff data, and using the wavelet approach. Research results indicated that: (a) Sediment load changes are severely impacted by the different types of human activity (e.g. construction of water reservoirs, deforestation/afforestation); and the runoff variability is the direct result of climatic changes, e.g. the precipitation changes. (b) The impacts of human activity and climatic changes on the sediment load and runoff changes are greater in smaller river basins (e.g. the Jialingjiang River basin) than in larger river basins. The response of sediment load and runoff changes to the impacts of human activities and climatic changes are prompt and prominent in the Jialingjiang River basin relative to those in the mainstem of the Yangtze River basin. (c) Construction of the Three Gorges Dam has already had obvious impacts on the sediment transport process in the middle and lower Yangtze River basin, but shows no obvious influence on the runoff changes. Construction of the Three Gorges Dam will result in further re-adjustment of the scouring/filling process within the river channel in the middle and lower Yangtze River basin, and have corresponding effects on the altered sediment load because of the Dam's operation for the river channel, ecology, sustainable social economy and even the development of the Yangtze Delta. This will be of concern to local governments and policy makers.  相似文献   

12.
Uplift of Tibet Plateau and formation of Asian Monsoon greatly affect East Asian geomorphological evolution, climate change and environment systems. Thus, those phenomena also control the origin, size and direction of river systems. The Yangtze River, as the most important linkage between Tibet Plateau and the East Asian marginal seas, delivers large volumes of water, sediment, and associated chemicals from its headwater regions and tributaries to the East China Sea, significantly influencing sedimentary system evolution in its drainage basin. Therefore, the formation of the modern Yangtze River and its geological-time evolution history have been paid more and more attention to since the beginning of the last century. After debated for more than a century, the First Bend in Shigu area and the Three Gorges have been known as the key capture point of the Yangtze River's evolution history. In particularly, the Three Gorges incision period remains greatly controversial, which mainly focuses on Cretaceous period-Neogene period, early Pleistocene period, and late Quaternary period. The Yichang Gravel, just located downstream and outlet of the Three Gorges with an inverted triangle shape, is mainly distributed in western Jianghan Basin with over 1 000km2. Because of its wide distribution and key geographical location, many typical profiles of Yichang Gravel have been the critical materials for studies on stratigraphic division, geomorphic evolution, and paleoenvironment change in middle Yangtze River Basin, especially on the Three Gorges incision history. Based on the previous field investigation, the Yichang gravel unconformably overlies the Cretaceous bedrocks and underlies the mid-Pleistocene vermicular red earth. In addition, studies on heavy mineral assemblages, Pb isotopic compositions of detrital K-feldspar grains, magnetic characteristics as well as pollen assemblage characteristics have showed that sediments in Yichang Gravel are mainly derived from upper Yangtze River Basin, such as Jinshangjiang drainage, Minjiang drainage, Jialingjiang drainage and Wujiang drainage. Based on the above comprehensive analysis, researchers demonstrated that the depositing time of Yichang Gravel can best constrain the Three Gorges incising time. The absolute altitude of Yichang Gravel exceeds 110m, and many thick sand lens are developed from top to bottom of the profiles. In this study, we applied the quartz Ti-Li center ESR dating method in Yichang Gravel to determine its absolute formation age, and then to constrain the minimum cutting-through time of Three Gorges. Eight samples(SXY-1, SXY-2, YC-1-4, LJY-1, LJY-2)were collected from the sand lens at depths of 4m, 19m, 40m, 51m, 63m, 75m, 83m and 99m respectively from the top of the profile. At the same time, in order to evaluate the residual dose of Ti-Li center after sunlight bleaching, we also sampled four modern surface Yangtze River sediments near Yichang Gravel for ESR measurement. The result shows that the quartz Ti-Li center ESR signal intensity of the 4 modern fluvial sediments samples are zero, which implies that the Ti-Li center ESR signal intensity of quartz in Yichang Gravel sand lens could be bleached to zero before the last burial. Thus, the above results indicate that the ESR dating results of this paper are reliable. The ESR absolute age from top to bottom of the profile is 0.73Ma BP,0.87Ma BP,0.98Ma BP,1.04Ma BP,1.05Ma BP,1.10Ma BP, 1.11Ma BP, 1.12Ma BP, respectively. The ESR dating results show that the Yichang Gravel began to deposit at about 1. 12Ma BP until 0. 73Ma BP, and the Ti-Li center ESR age indicates that the Yangtze River cut through Three Gorges area no later than 1.12Ma BP.  相似文献   

13.
Construction of large dams is attractive because of their great benefits in flood control,hydropower generation,water resources utilization,navigation improvement,etc.However,dam construction may bring some negative impacts on sediment transport and channel dynamics adjustments.Due to the effects of recent water and soil conservation projects,sediment retention in the newly constructed large upstream reservoirs,and other factors,the sedimentation in the Three Gorges Reservoir(TGR)is quite different from the amount previously predicted in the demonstration stage.Consequently,based on the measured data,characteristics of sedimentation and the related channel deformation in the TGR were analyzed.The results imply that sediment transport tended to be reduced after the Three Gorges Project(TGP).Sedimentation slowed dramatically after 2013 and indicated obvious seasonal characteristics.Due to the rising water level in the TGR in the flood season,the yearly sediment export ratio(Eratio)was prone to decrease.The water level near the dam site should be reasonably regulated according to the flow discharge to improve the sediment delivery capacity and reduce sedimentation in the TGR,and to try to avoid situations where the flood retention time is close to 444 h.The depositional belt was discontinuous in the TGR and was mainly distributed in the broad reaches,and only slight erosion or deposition occurred in the gorge reaches.Sedimentation in the broad and gorge reaches accounted for 93.8% and 6.2% of the total sedimentation,respectively.The estuarine reach located in the fluctuating backwater area experienced alternate erosion-deposition,with a slight accumulative deposition in the curved reach.Sedimentation mainly occurred in the perennial backwater area.The insight gained in this study can be conducive to directly understanding of large reservoir sedimentation and mechanism of channel adjustment in the reservoir region in the main channel of large river.  相似文献   

14.
A methodology is developed in this paper to include soil–structure interaction effects in optimal structural control, General Multi-Degree-Of-Freedom (MDOF) structural models are considered. The SSI transfer functions for ground motion and control force in the physical space are presented first, followed by a methodology for using system identification techniques to find an equivalent fixed-base model of an MDOF SSI system. An iterative technique is applied to combine these methods for the determination of optimal control gains. The control effectiveness of considering soil–structure interaction is investigated for the controlled SSI system. It is found that the control algorithm considering SSI effects is more effective than the corresponding control algorithm assuming a fixed-base system model. In addition, the advantage of applying this methodology is observed to be more prominent in the cases where the SSI effects are more significant. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
三峡水库蓄水以来,支流小江呈富营养化加重的趋势,且多次暴发春季水华.水库蓄水以后支流流速变缓,水体滞留时间增加,是引发支流水华的主要因素之一.基于MIKE软件,建立小江调节坝下游至河口的二维水动力-富营养化模型,考虑碳、氮、磷3种元素在浮游植物有机体、死亡腐屑和无机盐中的循环转化,模拟小江河段的春季水华过程.分析小江生态调节坝的水量调节抑藻作用,即人为制造"洪水脉冲",增加短时间内的水流流速,对下游流场进行扰动以控制水华.计算结果表明,增大泄水量对调节坝下游的小江河段的春季藻华总体上具有一定的抑制作用.小江上游河段调度作用效果明显,下游高阳至入汇口河段调节作用较小,上游调节坝水力调度可以作为三峡水库支流水华应急治理措施之一.营养盐控制应该是控制支流水华的根本措施.  相似文献   

16.
Using updated hydrological datasets from three stations, including Cuntan, Yichang and Hankou, covering the period of January 1992–December 2008, the influence of Three Gorges Dam (TGD) on streamflow and sediment load of the Yangtze River was investigated. Results indicated that TGD did not seem to exert a significant influence on streamflow occurring at three stations and changes in streamflow can be mainly attributed to streamflows of tributaries. However, a sharp decrease in the sediment load after the impoundment of TGD was observed. Clear water after the impoundment caused erosion of riverbed and resulted in more sediment at the Hankou station than at the Yichang station. No distinct changes in the annual and monthly maximum sediment loads were observed before and after the impoundment. Therefore, annual and monthly maximum sediment load changes should be subjected mainly to river hydraulics. This study has practical relevance for understanding the influence of large hydraulic structures on the hydrological processes of large rivers.  相似文献   

17.
1 INTRODUCTIONIn recent years, the concePt of long-term sustained use of reservoirs has been addressed because areservoir is very much considered to be a nonrenewable resource (Morris and Fan, l998). Technically,many options for reservoir sedAnentation control can be utlized to pursue the sustainable develoPment ofwater resources. In general, reduction of incoming sedimen yields from watersheds is often emPloyedin conjunction with hydraulic methods such as flushing or density currnt vot…  相似文献   

18.
The sediment load of the Yangtze River (China) is decreasing because of construction of dams, of which the Three Gorges Dam (TGD) is the best known example. The rate of the decline in sediment load is well known, but changes in the sediment grain size distribution have not been given much attention. The TGD mostly traps sand and silt while clay is flushed through the reservoir. A large amount of sand is available in the Yangtze River downstream of the reservoir, and therefore the pre-dam sand concentration is not substantially reduced. The availability of silt on the Yangtze River bed is limited, and it is expected that most silt will be removed from the riverbed within one to two decades. In order to evaluate the impact of the change in grain size distribution on the tidal flats of the Yangtze Estuary, a highly schematized tidal flat model is setup. This model broadly reveals that the observed deposition rates are exceptionally large because of the high sediment concentration, the abundance of silt, the seasonal dominance of waves (shaping a concave profile), and the offshore tidal asymmetry. The model further suggests that deposition rates will be limitedly influenced by reductions in clay or fine silt but strongly impacted by reductions in median to coarse silt. The response of the downstream morphology to reservoir sedimentation therefore strongly depends on the type of trapped sediment. As a consequence, silt-dominated rivers, such as the Yangtze River and the Yellow River may be more strongly impacted than sand-dominated systems.  相似文献   

19.
Parameter uncertainty involved in hydrological and sediment modeling often refers to the parameter dispersion and the sensitivity of the parameter. However, a limitation of the previous studies lies in that the assignment of range and specification of probability distribution for each parameter is usually difficult and subjective. Therefore, there is great uncertainty in the process of parameter calibration and model prediction. In this study, the impact of probability parameter distribution on hydrological and sediment modeling was evaluated using a semi-distributed model—the Soil and Water Assessment Tool (SWAT) and Monte Carlo method (MC)—in the Daning River watershed of the Three Gorges Reservoir Region (TGRA), China. The classic types of parameter distribution such as uniform, normal and logarithmic normal distribution were involved in this study. Based on results, parameter probability distribution showed a diverse degree of influence on the hydrological and sediment prediction, such as the sampling size, the width of 95% confidence interval (CI), the ranking of the parameter related to uncertainty, as well as the sensitivity of the parameter on model output. It can be further inferred that model parameters presented greater uncertainty in certain regions of the primitive parameter range and parameter samples densely obtained from these regions would lead to a wider 95 CI, resulting in a more doubtful prediction. This study suggested the value of the optimized value obtained by the parameter calibration process could may also be of vital importance in selecting the probability distribution function (PDF). Such cases, where parameter value corresponds to the watershed characteristic, can be used to provide a more credible distribution for both hydrological and sediment modeling.  相似文献   

20.
Collection of samples of suspended sediment transported by streams and rivers is difficult and expensive. Emerging technologies, such as acoustic backscatter, have promise to decrease costs and allow more thorough sampling of transported sediment in streams and rivers. Acoustic backscatter information may be used to calculate the concentration of suspended sand-sized sediment given the vertical distribution of sediment size. Therefore, procedures to accurately compute suspended sediment size distributions from easily obtained river data are badly needed. In this study, techniques to predict the size of suspended sand are examined and their application to measuring concentrations using acoustic backscatter data are explored. Three methods to predict the size of sediment in suspension using bed sediment, flow criteria, and a modified form of the Rouse equation yielded mean suspended sediment sizes that differed from means of measured data by 7 to 50 percent. When one sample near the bed was used as a reference, mean error was reduced to about 5 percent. These errors in size determination translate into errors of 7 to 156 percent in the prediction of sediment concentration using backscatter data from 1 MHz single frequency acoustics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号