首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The lateral propagation of faults and folds is known to be an important process during the development of mountain belts, but little is known about the manner in which along‐strike fault–fold growth is expressed in pre‐ and syntectonic (growth) strata. We use a coupled tectonic and stratigraphic model to investigate the along‐strike stratigraphic expression of fault‐related folds/uplifts that grow in both the transport and strike directions. We consider faults that propagate following a quadratic (nonself‐similar evolution) or linear (self‐similar evolution) scaling law, using different slip distributions per episode of fault propagation, under general background sedimentation. We find that the long‐strike geometry of pre‐ and syntectonic strata and the geometry of growth axial surfaces reflect the mode of fault propagation. The geometry of strata observed in the model is similar to that observed in natural contractional structures when: (1) the evolution of the fault is nonself‐similar, or (2) the fault grows as a result of thrust faulting events with similar displacements along strike that are terminated abruptly at the fault tips.  相似文献   

3.
The impact of a pre‐existing rift fabric on normal fault array evolution during a subsequent phase of lithospheric extension is investigated using 2‐D and 3‐D seismic reflection, and borehole data from the northern Horda Platform, Norwegian North Sea. Two fault populations are developed: (i) a population comprising relatively tall (>2 km), N‐S‐striking faults, which have >1.5 km of throw. These faults are up to 60 km long, penetrate down into crystalline basement and bound the eastern margins of 6–15 km wide half‐graben, which contain >3 km of pre‐Jurassic, likely Permo–Triassic, but possibly Devonian syn‐rift strata; and (ii) a population comprising vertically restricted (<1 km), NW‐SE‐striking faults, which are more closely spaced (0.5–5 km), have lower displacements (30–100 m) and not as long (2–10 km) as those in the N–S‐striking population. The NW‐SE‐striking population typically occurs between the N‐S‐striking population, and may terminate against or cross‐cut the larger structures. NW–SE‐striking faults do not bound pre‐Jurassic half‐graben and are largely restricted to the Jurassic‐to‐Cretaceous succession. Seismic‐stratigraphic observations, and the stratigraphic position of the fault tips in both fault populations, allow us to reconstruct the Late Jurassic‐to‐Early Cretaceous growth history of the northern Horda Platform fault array. We suggest the large, N‐S‐striking population was active during the Permo–Triassic and possibly earlier (Devonian?), before becoming inactive and buried during the Early and Middle Jurassic. After a period of relative tectonic quiescence, the N‐S‐striking, pre‐Jurassic fault population propagated through the Early‐Middle Jurassic cover and individual fault systems rapidly (within <10 Ma) established their maximum length in response to Late Jurassic extension. These fault systems became the dominant structures in the newly formed fault array and defined the locations of the main, Late Jurassic‐to‐Early Cretaceous, syn‐rift depocentres. Late Jurassic extension was also accommodated by broadly synchronous growth of the NW‐SE‐striking fault population; the eventual death of this population occurred in response to the localization of strain onto the N–S‐striking fault population. Our study demonstrates that the inheritance of a pre‐existing rift fabric can influence the geometry and growth of individual fault systems and the fault array as a whole. On the basis of observations made in this study, we present a conceptual model that highlights the influence of a pre‐existing rift fabric on fault array evolution in polyphase rifts.  相似文献   

4.
In order to better understand the development of thrust fault‐related folds, a 3D forward numerical model has been developed to investigate the effects that lateral slip distribution and propagation rate have on the fold geometry of pre‐ and syn‐tectonic strata. We consider a fault‐propagation fold in which the fault propagates upwards from a basal decollement and along‐strike normal to transport direction. Over a 1 Ma runtime, the fault reaches a maximum length of 10 km and accumulates a maximum displacement of 1 km. Deformation ahead of the propagating fault tip is modelled using trishear kinematics while backlimb deformation is modelled using kink‐band migration. The applicability of two different lateral slip distributions, namely linear‐taper and block‐taper, are firstly tested using a constant lateral propagation rate. A block‐taper slip distribution replicates the geometry of natural fold‐thrusts better and is then used to test the sensitivity of thrust‐fold morphology to varied propagation rates in a set of fault‐propagation folds that have identical final displacement to length (Dmax/Lmax) ratios. Two stratigraphic settings are considered: a model in which background sedimentation rates are high and no topography develops, and a model in which a topographic high develops above the growing fold and local erosion, transport and deposition occur. If the lateral propagation rate is rapid (or geologically instantaneous), the fault tips quickly become pinned as the fault reaches its maximum lateral extent (10 km), after which displacement accumulates. In both stratigraphic settings, this leads to strike‐parallel rotation of the syn‐tectonic strata near the fault tips; high sedimentation rates relative to rates of uplift result in along‐strike thinning over the structural high, while low sedimentation rates result in pinchout against it. In contrast, slower lateral propagation rates (i.e. up to one order of magnitude greater than slip rate) lead to the development of along‐strike growth triangles when sedimentation rates are high, whereas when sedimentation rates are low, offflap geometries result. Overall we find that the most rapid lateral propagation rates produce the most realistic geometries. In both settings, time‐equivalent units display both nongrowth and growth stratal geometries along‐strike and the transition from growth to nongrowth has the potential to delineate the time of fault/fold growth at a given location. This work highlights the importance of lateral fault‐propagation and fault tip pinning on fault and fold growth in three dimensions and the complex syn‐tectonic geometries that can result.  相似文献   

5.
The geodynamic processes in the western Mediterranean are driven by both deep (mantle) processes such as slab‐rollback or delamination, oblique plate convergence and inherited structures. The present‐day deformation of the Alboran Sea and in particular the Nekor basin area is linked to these coeval effects. The seismically active Nekor basin is an extensional basin formed in a convergent setting at the eastern part of the Rif Chain whose boundaries extend both onshore and offshore Morocco. We propose a new structural model of the Nekor basin based on high‐resolution offshore data compiled from recent seismic reflection profiles, swath bathymetry acquisitions and industrial seismic reflection profiles. The new data set shows that the northern limit of the basin is oriented N49° with right‐stepping faults from the Bousekkour–Aghbal fault to the sinistral Bokkoya fault zone. This pattern indicates the presence of an inherited left‐lateral basement fault parallel to the major inherited Nekor fault. This fault has been interpreted as a Quaternary active left‐lateral transfer fault localized on weak structural discontinuities inherited from the orogenic period. Onshore and offshore active faults enclose a rhombohedral tectonic Nekor Basin. Normal faults oriented N155° offset the most recent Quaternary deposits in the Nekor basin, and indicate the transtensional behaviour of this basin. The geometry of these faults suggests a likely rollover structure and the presence at depth of a crustal detachment. Inactive Plio‐Quaternary normal faults to the east of the Ras Tarf promontory and geometries of depocentres seem to indicate the migration of deformation from east to west. The local orientations of horizontal stress directions deduced from normal fault orientations are compatible with the extrusion of the Rifian units and coherent with the westward rollback of the Tethyan slab and the localization of the present‐day slab detachment or delamination.  相似文献   

6.
《Basin Research》2018,30(2):321-343
This natural‐scale experimental study combines structural modelling of soft‐linked normal‐fault relays with a CFD (computational fluid dynamics) numerical simulation of a range of unconfined turbidity currents overrunning the relay‐system topography. The flow, released from an upslope inlet gate 2000‐m wide and 50‐m to 100‐m high, rapidly expands and adjusts its thickness, velocity and sediment load to the substrate slope of 1.5°. A lower initial sediment concentration or smaller thickness renders the quasi‐steady flow slower and its sediment‐transport capacity lower. A 3D pattern of large interfering Kelvin‐Helmholtz waves causes fluctuations of the local flow velocity magnitude and sediment concentration. Four zones of preferential sediment deposition are recognized: a near‐gate zone of abrupt flow expansion and self‐regulation; a flow‐transverse zone on the counter‐slope of fault footwall edges; a flow‐transverse zone at the fault‐scarp toes and a similar transverse zone near the crest of the hanging wall counter‐slopes. The sand deposited on the counter‐slope tends to be re‐entrained and fed back to the current by a secondary reverse underflow. The spatial extent and sediment accumulation capacity of depozones depend upon the released current volume. The impact of relay system on an overrunning current depends upon the fault separation distance and stage of tectonic evolution. An early‐stage relay system, with small vertical displacement and little overlap of faults, is bypassed by the current with minimum flow disturbance and no pronounced deposition. An advanced‐stage system, with greater fault displacement and overlap, gives a similar hydraulic effect as a single fault segment if the fault separation is small. If the separation is relatively large, the flow tends to be internally redirected sideways from the ramp into the hanging wall synclinal depressions. Since normal‐fault relays are common features in extensional basins, the study bears important implications for turbiditic slope‐fan models and for the spatial sand prediction in subsurface exploration of faulted submarine slopes.  相似文献   

7.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

8.
We attribute changes in the morphology of relay ramp channels (increased slope and decreased width) to variations in displacement rate on ramp‐adjacent normal faults. We map the faults and fluvial channels associated with four sites in different stages of fault interaction and linkage on the Volcanic Tableland, a Late Pleistocene ash‐flow tuff in east‐central California. Because these channels are inactive today, we estimate downstream changes in channel width and depth using HEC‐RAS, a one‐dimensional open channel flow model. Our results show that channel slope must be greater than about 0.05 before there are substantial decreases in width or substantial increases in depth. Displacement rate increases during interaction between en echelon segments results in the increases in channel slope and decreases in channel width. Moreover, our data show that these changes begin to occur during the very early stages of fault interaction, well before the fault geometry would indicate ongoing or imminent linkage.  相似文献   

9.
The growth, interaction and controls on normal fault systems developed within stacked delta systems at extensional delta‐top settings have not been extensively examined. We aim to analyse the kinematic, spatial and temporal growth of a Cretaceous aged, thin‐skinned, listric fault system in order to further the understanding of how gravity‐driven fault segments and fault systems develop and interact at an extensional delta‐top setting. Furthermore, we aim to explore the influence of a pre‐existing structural framework on the development of gravity‐driven normal faults through the examination of two overlapping, spatially and temporally distinct delta systems. To do this, we use three‐dimensional (3D) seismic reflection data from the central Ceduna Sub‐basin, offshore southern Australia. The seismic reflection data images a Cenomanian‐Santonian fault system, and a post‐Santonian fault system, which are dip‐linked through an intervening Turonian‐early Campanian section. Both of these fault systems contain four hard‐linked strike assemblages oriented NW–SE (127–307), each composed of 13 major fault segments. The Cenomanian‐Santonian fault system detaches at the base of a shale interval of late Albian age, and is characterised by kilometre‐scale growth faults in the Cenomanian‐Sanontian interval. The post‐Santonian fault system nucleated in vertical isolation from the Cenomanian‐Santonian fault system. This is evident through displacement minima observed at Turonian‐early Campanian levels, which is indicative of vertical segmentation and eventual hard dip‐linkage. Our analysis constrains fault growth into four major evolutionary stages: (1) early Cenomanian nucleation and growth of fault segments, resulting from gravitational instability, and with faults detaching on the lower Albian interval; (2) Santonian cessation of growth for the majority of faults; (3) erosional truncation of fault upper tips coincident with the continental breakup of Australia and Antarctica (ca. 83 Ma); (4) Campanian‐Maastrichtian reactivation of the underlying Cenomanian‐Santonian fault system, inducing the nucleation, growth and consequential dip‐linkage of the post‐Santonian fault system with the underlying fault system. Our results highlight the along‐strike linkage of fault segments and the interaction through dip‐linkage and fault reactivation, between two overlapping, spatially and temporally independent delta systems of Cenomanian and late Santonian‐Maastrichtian age in the frontier Ceduna Sub‐Basin. This study has implications regarding the growth of normal fault assemblages, through vertical and lateral segment linkage, for other stacked delta systems (such as the Gulf of Mexico) where upper delta systems develop over a pre‐existing structural framework.  相似文献   

10.
Extensional fault‐propagation folds are now recognised as being an important part of basin structure and development. They have a very distinctive expression, often presenting an upward‐widening monocline, which is subsequently breached by an underlying, propagating fault. Growth strata, if present, are thought to provide a crucial insight into the manner in which such structures grow in space and time. However, interpreting their stratigraphic signal is neither straightforward nor unique. Both analogue and numerical models can provide some insight into fold growth. In particular, the trishear kinematic model has been widely adopted to explain many aspects of the evolution and geometry of such fault‐propagation folds. However, in some cases the materials/rheologies used to represent the cover do not reproduce the key geometric/stratigraphic features of such folds seen in nature. This appears to arise from such studies not addressing adequately the very heterogenous mechanical stratigraphy seen in many sedimentary covers. In particular, flexural slip between beds/layers is often not explicitly modelled but, paradoxically, it appears to be an important deformation mechanism operative in such settings. Here, I present a 2D discrete element model of extensional fault‐propagation folding which explicitly includes flexural slip between predefined sedimentary units or layers in the cover. The model also includes growth strata and shows how they may reflect the various evolutionary stages of fold and fault growth. When flexural slip is included in the modelling scheme, the resultant breached monoclines and their growth strata are strikingly similar to some of those seen in nature. Results are also compared with those obtained using simple, homogeneous, frictional‐cohesive and elastic cover materials. Both un‐lithified and lithified growth strata are considered and clearly show that, rather than just being passive recorders of structural evolution, growth strata can themselves have an important effect on fault‐related fold growth. Implications for the evolution of and strain within, the resultant growth structures are discussed. A final focus of this study is the relationship that trishear might have with the upward‐widening zone of flexural slip activation away from a fault tip singularity.  相似文献   

11.
Studies of normal fault systems in modern extensional regimes (e.g. Basin and Range), and in exhumed, ancient rift basins (e.g. Gulf of Suez Rift) have shown a link between the evolution of fault‐related footwall topography and associated erosional drainage systems. In this study, we use 3D seismic reflection data to image the footwall crest of a gravity‐driven fault system developed during late Middle Jurassic to Early Cretaceous rifting on the Halten Terrace, offshore Mid‐Norway. This 22‐km‐long fault system lacks significant footwall uplift, with hangingwall subsidence accommodating throw accumulation on the fault system. Significant erosion has occurred along the length of the footwall crest and is defined by 96 catchments characterized by erosional channels. These erosional channels consist of small, linear systems up to 750 m long located along the front of the fault footwall. Larger, dendritic channel systems extend further back (up to 3 km normal to fault strike) into the footwall. These channels are up to 7 km long, up to 50 m deep and up to 1 km wide. Fault throw varies along strike, with greatest throw in the centre of the fault decreasing towards the fault tips; localized throw minima are interpreted to represent segment linkage points, which were breached as the fault grew. Comparison of the catchment location to the throw distribution shows that the largest catchments are in the centre of the fault and decrease in size to the fault tips. There is no link between the location of the breached segment linkage points and the location and size of the footwall catchments, suggesting that the first‐order control on footwall erosion patterns is the overall fault‐throw distribution.  相似文献   

12.
The thrust sheets of the Northern Calcareous Alps were emplaced during Late Cretaceous thrust‐dominated transpression expressed by thrust sheets segmented by closely spaced tear faults. Thrust sheet‐top sediments were deposited during thrusting and associated fold growth and were controlled by active folding and tearing. We observe two types of angular unconformities: (1) Angular unconformities above folds between tear faults conform with the model of progressive unconformities. Across these unconformities dip decreases upsection. (2) Here, we define progressive unconformities that are related to tear faults and are controlled by both folding and tearing. Across these unconformities both strike and dip change. In growth strata overlying folds dissected by high‐angle faults, such unconformities are expected to be common. We used analogue modelling to define the geometry of the tear faults and related unconformities. Within the syn‐tectonic sediments, a steep, upward flattening thrust within a broader, roughly tulip‐shaped drag zone develops. The thrust roots in the tear fault in pre‐tectonic deposits and is curved upward toward the downthrown block. Vertical offset on the thrust is related to differential vertical uplift caused by, for example, growth of folds with different wavelength and amplitude on either side of the tear fault. Formation of progressive unconformities is governed by the relationship between the rates of deposition and vertical growth of a structure. Fault‐related progressive unconformities are additionally controlled by the growth of the vertical step across the tear fault. When the rates of vertical growth of two neighbouring folds separated by a tear fault are similar, the rate of growth across the tear fault is small; if the first differ, the latter is high. Episodic tear fault activity may create several angular unconformities attached to a tear fault or allow the generation of angular unconformities near tear faults in sedimentary systems that have a rate of deposition too high to generate classical progressive unconformities between the tear faults.  相似文献   

13.
Well‐calibrated seismic interpretation in the Halten Terrace of Mid‐Norway demonstrates the important role that structural feedback between normal fault growth and evaporite mobility has for depocentre development during syn‐rift deposition of the Jurassic–Early Cretaceous Viking and Fangst Groups. While the main rift phase reactivated pre‐existing structural trends, and initiated new extensional structures, a Triassic evaporite interval decouples the supra‐salt cover strata from the underlying basement, causing the development of two separate fault populations, one in the cover and the other confined to the pre‐salt basement. Detailed displacement–length analyses of both cover and basement fault arrays, combined with mapping of the component parts of the syn‐rift interval, have been used to reveal the spatial and temporal evolution of normal fault segments and sediment depocentres within the Halten Terrace area. Significantly, the results highlight important differences with traditional models of normal fault‐controlled subsidence, including those from parts of the North Sea where salt is absent. It can now be shown that evaporite mobility is intimately linked to the along‐strike displacement variations of these cover and basement faults. The evaporites passively move beneath the cover in response to the extension, such that the evaporite thickness becomes greatest adjacent to regions of high fault displacement. The consequent evaporite swells can become large enough to have pronounced palaeobathymetric relief in hangingwall locations, associated with fault displacement maxima– the exact opposite situation to that predicted by traditional models of normal fault growth. Evaporite movement from previous extension also affects the displacement–length relationships of subsequently nucleated or reactivated faults. Evaporite withdrawal, on the other hand, tends to be a later‐stage feature associated with the high stress regions around the propagating tips of normal faults or their coeval hangingwall release faults. The results indicate the important effect of, and structural feedback caused by, syn‐rift evaporite mobility in heavily modifying subsidence patterns produced by normal fault array evolution. Despite their departure from published models, the results provide a new, generic framework within which to interpret extensional fault and depocentre development and evolution in areas in which mobile evaporites exist.  相似文献   

14.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.  相似文献   

15.
《Basin Research》2018,30(Z1):363-381
Inversion of pre‐existing extensional fault systems is common in rift systems, back‐arc basins and passive margins. It can significantly influence the development of structural traps in hydrocarbon basins. The analogue models of domino‐style basement fault systems shown in this paper produced, on extension, characteristic hangingwall growth stratal wedges that, when contracted and inverted, formed classic inversion harpoon geometries and asymmetric hangingwall contractional fault‐propagation folds. Segmented footwall shortcut faults formed as the basement faults were progressively back‐rotated and steepened. The pre‐existing extensional fault architectures, basement fault geometries and the relative hangingwall and footwall block rotations exerted fundamental controls on the inversion styles. Digital image correlation (DIC) strain monitoring illustrated complex vertical fault segmentation and linkage during inversion as the major faults were reactivated and strain was progressively transferred onto footwall shortcut faults. Hangingwall deformation during inversion was dominated by significant back‐rotation as the inversion progressed. The mechanical stratigraphy of the cover sequences strongly influenced the fold and fault evolution of the reactivated fault systems. The implications of the experimental results for the interpretation and analysis of inversion structures are discussed and are compared with natural examples of inverted basement‐involved extensional faults observed in seismic datasets.  相似文献   

16.
Three‐dimensional (3D) numerical modelling of fault displacement enables the building of geological models to represent the complex 3D geometry and geological properties of faulted sedimentary basins. Using these models, cross‐fault juxtaposition relationships are predicted in 3D space and through time, based on the geometries of strata that are cut by faults. Forward modelling of fault development allows a 3D prediction of fault‐zone argillaceous smear using a 3D application of the Shale Gouge Ratio. Numerical models of the Artemis Field, Southern North Sea, UK and the Moab Fault, Utah, USA are used to demonstrate the developed techniques and compare them to traditional one‐ and two‐dimensional solutions. These examples demonstrate that a 3D analysis leads to significant improvements in the prediction of fault seal, the analysis of the interaction of the sealing properties of multiple faults, and the interpretation of fault seal within the context of sedimentary basin geometry.  相似文献   

17.
《Basin Research》2018,30(4):688-707
Investigations of syn‐sedimentary growth faults in the Last Chance delta (Ferron Sandstone, Utah, USA) show that fault‐bounded half‐grabens arrested high amounts of sand in the mouth bar and/or distributary channel areas. Fault‐controlled morphology causes changes in routing of the delta top to delta front drainage towards the long axis of half‐grabens. Faulting was spatially and temporally non‐systematic, and polyphase, with 3D cusp/listric fault geometries instigated by linkage of variously oriented segments. Hanging wall rollover folds consisting of wedge‐shaped syn‐kinematic sand attest to rapid <1‐m slip increments on faults followed by mild erosion along crests of fault blocks and sedimentary infill of adjacent accommodation. Triangle‐zones in prodelta to delta front muds are located underneath steeper faults and interconnected rotated fault‐flats. Their geometry is that of antiformal stack duplexes, in an arrangement of low‐angle‐to‐bedding normal faults at the base, replaced by folded thrusts upwards. These faults show a brittle, frictional flow deformation mechanism ascribed to early compaction of mud. For syn‐kinematic sand, there is a change from general granular/hydroplastic flow in shear zones to later brittle failure and cataclasis, a transition instigated by precipitation of calcite cement. Extensional faulting in the Last Chance delta was likely controlled by gravity driven collapse towards the delta slope and prodelta, as is commonly observed in collapsing deltas. The trigger and driving mechanism is envisioned as localized loads from sand deposited within distributary channels/mouth bars and fault‐controlled basins along the delta top. A regional tilt and especially displacement of compacted mud below sand bodies towards less compacted muds also contributed to the faulting.  相似文献   

18.
This article focuses on the reinterpretation of well, seismic reflection, magnetic, gravimetric, surface wave and geological surface data, together with the acquisition of seismic noise data to study the Lower Tagus Cenozoic Basin tectono‐sedimentary evolution. For the first time, the structure of the base of the basin in its distal and intermediate sectors is unravelled, which was previously only known in the areas covered by seismic reflection data (distal and small part of intermediate sectors). A complex geometry was found, with three subbasins delimited by NNE‐SSW faults and separated by WNW‐ESE to NW‐SE oriented horsts. In the area covered by seismic reflection data, four horizons were studied: top of the Upper Miocene, Lower to Middle Miocene top, the top of the Palaeogene and the base of Cenozoic. Seismic data show that the major filling of the basin occurred during Upper Miocene. The fault pattern affecting Neogene and Palaeogene units derived here points to that of a polyphasic basin. In the Palaeogene, the Vila Franca de Xira (VFX) and a NNE‐SSW trending previously unknown structure (ABC fault zone) probably acted as the major strike‐slip fault zones of the releasing bend of a pull‐apart basin, which produced a WNW‐ESE to NW‐SE fault system with transtensional kinematic. During the Neogene, as the stress regime rotated anticlockwise to the present NW‐SE to WNW‐ESE orientation, the VFX and Azambuja fault zones acted as the major transpressive fault zones and Mesozoic rocks overthrusted Miocene sediments. The reactivation of WNW‐ESE to NW‐SE fault systems with a dextral strike‐slip component generated a series of horsts and grabens and the partitioning of the basin into several subbasins. Therefore, we propose a polyphasic model for the area, with the formation of an early pull‐apart basin during the Palaeogene caused by an Iberia–Eurasia plates collision that later evolved into an incipient foreland basin along the Neogene due to a NW‐SE to WNE‐ESE oriented Iberia–Nubia convergence. This convergence is producing uplift in the area since the Quaternary except for the Tagus estuary subbasin around the VFX fault, where subsidence is observed. This may be due to the locking or the development of a larger component of strike‐slip movement of the NNE‐SSW to N‐S thrust fault system with the exception of the VFX fault, which is more favourably oriented to the maximum compressive stress.  相似文献   

19.
A new and efficient method for fault seal analysis using seismic data is presented. It uses multiple seismic attributes and neural networks to enhance fluid migration pathways, including subtle features that are not detectable using single attributes only. The method may be used as a first estimate of fault seal or to calibrate results from other techniques. The results provide information about which faults and fault segments are sealing or leaking. Fluid flow along individual faults appears to be focused along zones of weakness, and fault seal research should thus be focused on finding such weak locations within fault zones, a task that is best done using three‐dimensional (3D) seismic data. Under certain conditions, it is suggested that fluids migrate along fault planes by a diapiric fluid flow mechanism. The results assist in calibrating the bulk hydraulic properties of faults and rock formations and can be used in basin modelling.  相似文献   

20.
Because salt can decouple sub‐ and supra‐salt deformation, the structural style and evolution of salt‐influenced rifts differs from those developed in megoscopically homogenous and brittle crust. Our understanding of the structural style and evolution of salt‐influenced rifts comes from scaled physical models, or subsurface‐based studies that have utilised moderate‐quality 2D seismic reflection data. Relatively few studies have used high‐quality 3D seismic reflection data, constrained by borehole data, to explicitly focus on the role that along‐strike displacement variations on sub‐salt fault systems, or changes in salt composition and thickness, play in controlling the four‐dimensional evolution of supra‐salt structural styles. In this study, we use 3D seismic reflection and borehole data from the Sele High Fault System (SHFS), offshore Norway to determine how rift‐related relief controlled the thickness and lithology of an Upper Permian salt‐bearing layer (Zechstein Supergroup), and how the associated variations in the mechanical properties of this unit influenced the degree of coupling between sub‐ and supra‐salt deformation during subsequent extension. Seismic and borehole data indicate that the Zechstein Supergroup is thin, carbonate‐dominated and immobile at the footwall apex, but thick, halite‐dominated and relatively mobile in high accommodation areas, such as near the lateral fault tips and in the immediate hangingwall of the fault system. We infer that these variations reflect bathymetric changes related to either syn‐depositional (i.e. Late Permian) growth of the SHFS or underfilled, fault scarp‐related relief inherited from a preceding (i.e. Early Permian) rift phase. After a period of tectonic quiescence in the Early Triassic, regional extension during the Late Triassic triggered halokinesis and growth of a fault‐parallel salt wall, which was followed by mild extension in the Jurassic and forced folding of Triassic overburden above the fault systems upper tip. During the Early Cretaceous, basement‐involved extension resulted in noncoaxial tilting of the footwall, and the development of an supra‐salt normal fault array, which was restricted to footwall areas underlain by relatively thick mobile salt; in contrast, at the footwall apex, no deformation occurred because salt was thin and immobile. The results of our study demonstrate close coupling between tectonics, salt deposition and the style of overburden deformation for >180 Myr of the rift history. Furthermore, we show that rift basin tectono‐stratigraphic models based on relatively megascopically homogeneous and brittle crust do not appropriately describe the range of structural styles that occur in salt‐influenced rifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号