首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.  相似文献   

2.
The Plastic Scintillator Detector(PSD) onboard the DArk Matter Particle Explorer(DAMPE)is designed to measure cosmic ray charge(Z) and to act as a veto detector for gamma ray identification.To fully exploit the charge identification potential of PSD and to enhance its capability to identify gamma ray events, we develop an alignment method for the PSD. The path length of a given track in the volume of a PSD bar is derived taking into account the shift and rotation alignment corrections. By examining energy spectra of corner-passing events and fully contained events, position shifts and rotations of all PSD bars are obtained, and are found to be on average about 1 mm and 0.0015 radian respectively. To validate the alignment method, we introduce artificial shifts and rotations of PSD bars into the detector simulation.These shift and rotation parameters can be recovered successfully by the alignment procedure. As a result of the PSD alignment procedure, the charge resolution of the PSD is improved from 4% to 8%, depending on the nuclei.  相似文献   

3.
We present results of simulations performed with the Geant4 software code of the effects of Galactic Cosmic Ray impacts on the photoconductor arrays of the PACS instrument. This instrument is part of the ESA-Herschel payload, which will be launched in 2008 and will operate at the Lagrangian L2 point of the Sun-Earth system. Both the Satellite plus the cryostat (the shield) and the detector act as source of secondary events, affecting the detector performance. Secondary event rates originated within the detector and from the shield are of comparable intensity. The impacts deposit energy on each photoconductor pixel but do not affect the behaviour of nearby pixels. These latter are hit with a probability always lower than 7%. The energy deposited produces a spike which can be hundreds times larger than the noise. We then compare our simulations with proton irradiation tests carried out for one of the detector modules and follow the detector behaviour under ‘real’ conditions.  相似文献   

4.
The effects of the in-flight behaviour of the bolometer arrays of the Herschel/Photo-conductor Array Camera and Spectrometer (PACS) instrument under impacts of Galactic cosmic rays are explored. This instrument is part of the ESA-Herschel payload, which will be launched at the end of 2008 and will operate at the Lagrangian L2 point of the Sun-Earth system. We find that the components external to the detectors (the spacecraft, the cryostat, the PACS box, collectively referred to as the ‘shield’) are the major source of secondary events affecting the detector behaviour. The impacts deposit energy on the bolometer chips and influence the behaviour of nearby pixels. 25% of hits affect the adjacent pixels. The energy deposited raises the bolometer temperature by a factor ranging from 1 to 6 percent of the nominal value. We discuss the effects on the observations and compare simulations with laboratory tests.  相似文献   

5.
Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high resolution devices for hard X-ray imaging and spectroscopic studies. The new series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of 20 to 150 keV, are used to image solar flares in hard X-rays. Since these modules are essentially manufactured for commercial applications, we have carried out a series of comprehensive tests on these modules so that they can be confidently used in space-borne systems. These tests lead us to select the best three pieces of the ??Gold?? modules for the RT-2/CZT payload. This paper presents the characterization of CZT modules and the criteria followed for selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries, along with three CZT modules, a high spatial resolution CMOS detector for high resolution imaging of transient X-ray events. Therefore, we discuss the characterization of the CMOS detector as well.  相似文献   

6.
The first space-borne solar astronomy experiment of India, namely Solar X-ray Spectrometer (SOXS), was successfully launched on 08 May 2003 on board geostationary satellite GSAT-2 of India. The SOXS is composed of two independent payloads, viz. SOXS Low-Energy Detector (SLD) Payload and SOXS High-Energy Detector (SHD) Payload. The SOXS aims to study the full-disk integrated X-ray emission in the energy range from 4 keV to 10 MeV. In this paper we present the first report on the SLD instrumentation and its in-orbit performance. The SLD payload was designed and developed at the Physical Research Laboratory in collaboration with various centers of Indian Space Research Organisation (ISRO). The basic scientific aim of the SLD payload is to study solar flares in the energy range from 4 to 60 keV with high spectral and temporal resolution. To meet these requirements, the SLD payload employs state-of-the-art solid state detectors, the first time for a solar astronomy experiment, viz. Si PIN (4 –25 keV), and cadmium–zinc–telluride (4 –60 keV). With their superb high-energy resolution characteristics, SLD can observe iron and iron–nickel complex lines that are visible only during solar flares. In view of its 3.4 FOV, the detector package is mounted on a Sun Aspect System, for the first time, to get uninterrupted observations in a geostationary orbit. The SLD payload configuration, its in-flight operation, and the response of the detectors are presented. We also present the first observations of solar flares made by the SLD payload and briefly describe their temporal and spectral mode results.  相似文献   

7.
Indian Centre for Space Physics has taken a novel strategy to study low energy cosmic rays and astrophysical X-ray sources which involve very light weight payloads up to about five kilograms on board a single or multiple balloons which are used for meteorological purposes. The mission duration could be anywhere from 3-12 hours. Our strategy provides extreme flexibility in mission preparation and its operation using a very economical budget. There are several limitations but our innovative approach has been able to extract significant amount of scientific data out of these missions. So far, over one hundred missions have been completed by us to near space and a wealth of data has been collected. The payloads are recovered and are used again. Scientific data is stored on board computer and the atmospheric data or payload location is sent to ground in real time. Since each mission is different, we present here the general strategy for a typical payload and provide some results we obtained in some of these missions.  相似文献   

8.
Recent reports of superhigh energy cosmic rays beyond the expected spectral cutoff have intensified interest in the unknown origin of the highest energy cosmic rays. There is a need for a much larger data base of more precisely measured air showers. This requires new sensitive detectors of enormous aperture. Combining a ground array of particle counters with an optical detector of atmospheric fluorescence yields a detector of outstanding capability. Such a hybrid detector provides far more accurate measurements of energies, arrival directions, and primary particle atomic masses than can be achieved by either type of detector separately.  相似文献   

9.
The First Spacelab mission, launched on Space ShuttleFlight STS-9 in November 1983 carried a multidisciplinary payload which was intended to demonstrate that valuable scientific results can be achieved from such short duration missions. The payload complement included a spectrometer to undertake observations of the brighter cosmic X-ray sources. The primary scientific objectives of this experiment were the study of detailed spectral features in cosmic X-ray sources and their associated temporal variations over a wide energy range from about 2 up to 30 keV. The instrument based on the gas scintillation proportional counter had an effective area of some 180 cm2 with an energy resolution of 9% at 7 keV.The instrument parameters and the performance, using data from the flight and ground calibration, are discussed.  相似文献   

10.
硅微条探测器空间分辨率高、工作性能稳定, 广泛地应用于空间高能粒子探测领域. 如费米gamma射线空间望远镜(Fermi Gamma-ray Space Telescope, FGST)以及阿尔法磁谱仪(Alpha Magnetic Spectrometer 2, AMS-02)的径迹探测器中都采用了高位置分辨率的硅微条探测器. 基于硅微条探测器在空间观测领域的应用前景, 针对硅微条探测器单元设计了一套低噪声的电子学读出系统. 整个电子学系统分为前端电子学、数据获取电路和上位机软件. 前端电子学为提高集成度, 采用了一款电荷读出芯片VATAGP8, 实现了多通道、低噪声的电荷信号测量; 数据获取电路使用现场可编程门阵列(Field Programmable Gate Array, FPGA)实现了对前端电子学的时序控制以及对测量信号的采集控制; 上位机用来接收、处理数据获取电路采集的信号数据. 在对电子学通道的线性、基线、噪声等性能进行测试之后, 得到系统在0--200fC电荷输入范围内的线性增益约为13.41bin/fC, 积分非线性小于1%, 噪声小于0.093fC. 为了验证电子学读出系统对硅微条探测器单元的读出能力, 将两者集成在一起并测试了宇宙线缪子的能量沉积, 得到读出电子学系统的信噪比大于32, 缪子的电离损失能谱与Landau-Gaussian分布符合较好, 能够满足硅微条探测器单元读出电子学的设计要求.  相似文献   

11.
DuneXpress     
The DuneXpress observatory will characterize interstellar and interplanetary dust in-situ, in order to provide crucial information not achievable with remote sensing astronomical methods. Galactic interstellar dust constitutes the solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with DuneXpress in Earth orbit will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Hence DuneXpress will provide insights into the physical conditions during planetary system formation. This comparison of interstellar and interplanetary dust addresses directly themes of highest priority in astrophysics and solar system science, which are described in ESA’s Cosmic Vision. The discoveries of interstellar dust in the outer and inner solar system during the last decade suggest an innovative approach to the characterization of cosmic dust. DuneXpress establishes the next logical step beyond NASA’s Stardust mission, with four major advancements in cosmic dust research: (1) analysis of the elemental and isotopic composition of individual interstellar grains passing through the solar system, (2) determination of the size distribution of interstellar dust at 1 AU from 10 − 14 to 10 − 9 g, (3) characterization of the interstellar dust flow through the planetary system, (4) establish the interrelation of interplanetary dust with comets and asteroids. Additionally, in supporting the dust science objectives, DuneXpress will characterize dust charging in the solar wind and in the Earth’s magnetotail. The science payload consists of two dust telescopes of a total of 0.1 m2 sensitive area, three dust cameras totaling 0.4 m2 sensitive area, and a nano-dust detector. The dust telescopes measure high-resolution mass spectra of both positive and negative ions released upon impact of dust particles. The dust cameras employ different detection methods and are optimized for (1) large area impact detection and trajectory analysis of submicron sized and larger dust grains, (2) the determination of physical properties, such as flux, mass, speed, and electrical charge. A nano-dust detector searches for nanometer-sized dust particles in interplanetary space. A plasma monitor supports the dust charge measurements, thereby, providing additional information on the dust particles. About 1,000 grains are expected to be recorded by this payload every year, with 20% of these grains providing elemental composition. During the mission submicron to micron-sized interstellar grains are expected to be recorded in statistically significant numbers. DuneXpress will open a new window to dusty universe that will provide unprecedented information on cosmic dust and on the objects from which it is derived.  相似文献   

12.
Two years after launch (04.21.97), LEGRI is operating on Minisat-01 in a LEO orbit. The LEGRI detector plane is formed by two type of gamma-ray solid state detectors: HgI2 and CdZnTe. Detectors are embedded in a box containing the FEE and DFE electronics. This box provides an effective detector passive shielding. Detector plane is multiplexed by a Coded Aperture System located at 54 cm and a Ta Collimator with a FCFOV of 22° and 2° angular resolution. The aim of this paper is to summarize the detector behaviour in three different time scales: before launch, during the in-orbit check-out period (IOC), and after two years of routine operation in space. Main results can be summarized as follows:A large fraction of the HgI2 detectors presented during LEGRI IOC very high count ratios from their first switch-on (May 1997). Therefore, they induced saturation in the on-board mass memory. After some unsuccessful attempts to reduce the count ratios by setting up different thresholds during LEGRI IOC, all of them were switched off except nine detectors in column 4, with a higher degree of stability.Oppositely, the 17 CdZnTe detectors present a remarkable stability in both their count-ratios and spectral shapes. Details about CdZnTe ground energy calibration, in-flight calibration (using the Crab) and detector stability are discussed hereafter. Detector efficiency function has been computed with the fixed flight threshold used within the calibrated energy range (20-80 KeV). It presents a maximum at 60 KeV, and decreasing efficiencies in the lower and upper energy range ends. Both, non-linear threshold cutting and the drop in the detector efficiency explain the CdZnTe computed operational efficiency response.  相似文献   

13.
We consider the possibility that the excess of cosmic rays near ∼1018 eV, reported by the AGASA and SUGAR groups from the direction of the Galactic Centre, is caused by a young, very fast pulsar in the high-density medium. The pulsar accelerates iron nuclei to energies ∼1020 eV, as postulated by the Galactic models for the origin of the highest-energy cosmic rays. The iron nuclei, about 1 yr after pulsar formation, leave the supernova envelope without energy losses and diffuse through the dense central region of the Galaxy. Some of them collide with the background matter creating neutrons (from disintegration of Fe), neutrinos and gamma-rays (in inelastic collisions). We suggest that neutrons produced at a specific time after the pulsar formation are responsible for the observed excess of cosmic rays at ∼1018 eV. From normalization of the calculated neutron flux to the one observed in the cosmic ray excess, we predict the neutrino and gamma-ray fluxes. It has been found that the 1 km2 neutrino detector of the IceCube type should detect from a few up to several events per year from the Galactic Centre, depending on the parameters of the considered model. Moreover, future systems of Cherenkov telescopes (CANGAROO III, HESS, VERITAS) should be able to observe  1–10 TeV  gamma-rays from the Galactic Centre if the pulsar was created inside a huge molecular cloud about  3–10×103 yr  ago.  相似文献   

14.
低温制冷技术是下一代激光干涉仪引力波探测器的核心技术之一. 日本引力波探测器KAGRA (Kamioka Gravitational Wave Detector)作为该技术的前沿开拓者, 将运行在20K的超低温环境中, 并使用在低温下热噪声较低的单晶蓝宝石晶体作为测试镜. 然而, 高质量大尺寸低吸收率的蓝宝石晶体极难制备. 此外, 由于蓝宝石晶体存在晶格结构不均匀, 很容易导致不必要的双折射效应, 从而影响探测器的目标灵敏度. 基于上述问题, 开发了两套大尺寸光学测量系统, 首次系统研究了KAGRA低温蓝宝石测试镜的光学特性. 首先, 根据探测器对测试镜热噪声的要求, 开发了一套基于光热共光路干涉技术的光学测量系统, 该系统可对测试镜以及测试镜表面涂层的光学吸收进行有效的表征. 其次, 基于光学吸收测量系统, 开发了一套双折射效应测量系统, 该系统可以有效表征测试镜中双折射的均匀性. 目前两套测量系统的搭建与调试已完成, 对蓝宝石测试镜光学吸收的测量灵敏度达到了1.5ppm/cm, 双折射测量系统的空间分辨率小于0.3mm times 0.3mm. 该工作对降低大尺寸低温测试镜双折射效应及提高探测器灵敏度具有重要意义.  相似文献   

15.
硬X射线成像仪(Hard X-ray Imager, HXI)是先进天基太阳天文台(Advanced Space-based Solar Observatory, ASO-S)的3大载荷之一, 其中量能器作为其重要组成部分, 承担着观测30--200keV能段的太阳硬X射线的任务. 在卫星发射之前, 需要开展大量的测试工作, 以确保HXI量能器的各项功能和性能满足设计需求. HXI量能器通道数众多, 内含99个溴化镧探测器, 分别由8块相同的前端电子学板控制. 除了对各个通道的性能进行测试外, 地检系统还需模拟量能器在轨面对不同太阳活动时的运行情况, 对量能器进行全面完备的测试. 此外, 地检系统还需足够稳定, 能满足量能器在单机测试、环境试验、热真空与振动等多个不同测试项目的长时间测试需求. 为此, 设计了地检板与上位机软件, 结合放射源、直流电源、高压模块等组成一套HXI量能器的地检系统, 对8块前端电子学板实现同步配置与管理, 能高效完成指令发送与数据接收, 满足量能器最大数据输出带宽400Mbps的需求. 利用该系统, 在地面完成了HXI量能器的功能、性能验证, 获得了量能器的线性、死时间、能量分辨率等各项性能指标, 为HXI量能器的在轨高性能运行提供了保障.  相似文献   

16.
Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic ray ions in the ICM is still lacking, they produce γ-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope ( GLAST ) and imaging atmospheric Čerenkov telescopes (IACTs) for constraining the cosmic ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (≲10 per cent) constraints for distant  ( z ≲ 0.25)  clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic ray spectrum potentially provided by IACTs. Future γ-ray observations of clusters can constrain the evolution of cosmic ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev–Zel'dovich effect cluster surveys.  相似文献   

17.
18.
CODALEMA is one of the pioneer experiments dedicated to the radio detection of ultra high energy cosmic rays (UHECR), located at the radio observatory of Nançay (France). The CODALEMA experiment uses both a particle detector array and a radio antenna array. Data from both detection systems have been used to determine the ground coordinates of the core of extensive air showers (EAS). We discuss the observed systematic shift of the core positions determined with these two detection techniques. We show that this shift is due to the charge-excess contribution to the total radio emission of air showers, using the simulation code SELFAS. The dependences of the radio core shift to the primary cosmic ray characteristics are studied in details. The observation of this systematic shift can be considered as an experimental signature of the charge excess contribution.  相似文献   

19.
We investigate the relative sensitivities of several tests for deviations from Gaussianity in the primordial distribution of density perturbations. We consider models for non-Gaussianity that mimic that which comes from inflation as well as that which comes from topological defects. The tests we consider involve the cosmic microwave background (CMB), large-scale structure, high-redshift galaxies, and the abundances and properties of clusters. We find that the CMB is superior at finding non-Gaussianity in the primordial gravitational potential (as inflation would produce), while observations of high-redshift galaxies are much better suited to find non-Gaussianity that resembles that expected from topological defects. We derive a simple expression that relates the abundance of high-redshift objects in non-Gaussian models to the primordial skewness.  相似文献   

20.
Map making presents a significant computational challenge to the next generation of kilopixel cosmic microwave background polarization experiments. Years worth of time ordered data (TOD) from thousands of detectors will need to be compressed into maps of the T , Q and U Stokes parameters. Fundamental to the science goal of these experiments, the observation of B modes, is the ability to control noise and systematics. In this paper, we consider an alternative to the maximum likelihood method, called destriping , where the noise is modelled as a set of discrete offset functions and then subtracted from the time stream. We compare our destriping code (Descart: the DEStriping CARTographer) to a full maximum likelihood mapmaker, applying them to 200 Monte Carlo simulations of TOD from a ground-based, partial-sky polarization modulation experiment. In these simulations, the noise is dominated by either detector or atmospheric  1/ f   noise. Using prior information of the power spectrum of this noise, we produce destriped maps of T , Q and U which are negligibly different from optimal. The method does not filter the signal or bias the E- or B-mode power spectra. Depending on the length of the destriping baseline, the method delivers between five and 22 times improvement in computation time over the maximum likelihood algorithm. We find that, for the specific case of single detector maps, it is essential to destripe the atmospheric  1/ f   in order to detect B modes, even though the Q and U signals are modulated by a half-wave plate spinning at 5 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号