首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
鄂尔多斯深部咸水层CO_2地质封存效果评价   总被引:1,自引:0,他引:1  
中国首个陆上咸水层CO_2地质封存全流程示范项目于2010年正式实施。为更加清晰、准确地了解注入场地储层的注入性能和注入封存过程中可能遇到的潜在问题,基于场地储层结构和注入监测数据,采用储层多相流模拟软件TOUGH2-MP/ECO_2N对鄂尔多斯105 t/a CO_2注入1 620 m以深的特低渗砂岩咸水含水层进行数值模拟,对储层的压力积聚和CO_2羽体扩散的动态演化以及储层封存量进行评估。结果表明,所建立的模型比较准确地反映了实际注入过程和注入效果。3a注入引起的最大压力抬升小于15 MPa,CO_2在含水层中总体呈均匀扩散,CO_2注入地下3a和53a后,羽体在刘家沟储层中的横向迁移距离分别为550 m和700 m左右。在目前的统注方案下,CO_2主要封存层位在储层上部的刘家沟组(埋深为1 690~1 699 m),其吸气量占整个储层封存量的80%以上,储层吸气能力具有由浅到深变差的特征。53a模拟期内,进入泥岩盖层的CO_2总量不及注入总量的0.05%。  相似文献   

2.
《岩土力学》2017,(Z1):181-188
CO_2地质封存(GCS)是一项将CO_2注入并且永久封存于地下含水层或废弃油气储层等地质体内的CO_2减排技术。由于场地地质条件和人类开发活动导致的不确定性,注入储层的CO_2可通过泄漏废弃井、断层或裂缝以及盖层的"薄弱带"等途径发生泄漏。基于对国内外文献的广泛调研,综述了GCS泄漏及封存安全的研究进展。CO_2沿钻井泄漏一般是因为化学或力学作用导致CO_2沿钻井环空水泥、井筒桥塞或围岩破碎带发生泄漏。CO_2注入储层可能导致盖层破裂,激活原本闭合的断层或断层面滑动。CO_2沿断层/裂缝泄漏主要受有效渗透率、裂缝开度等因素影响。盖层泄漏的方式可归纳为渗透泄漏、扩散泄漏和沿裂隙泄漏3种。CO_2透过盖层的扩散泄漏对于大时空尺度CO_2地质封存泄漏评估不应忽视。CO_2泄漏通常会导致受影响的含水层内地下水的p H值减小、盐度升高、离子增多等地球化学响应,甚至存在自由态CO_2。含水层内流体压力和地球化学特征可用于有效监测封存CO_2、咸水与其他流体的泄漏。GCS泄漏研究目前还十分有限,我国尤其缺乏泄漏的定量研究。  相似文献   

3.
深部咸水层二氧化碳地质储存场地选址储盖层评价   总被引:1,自引:0,他引:1  
深部咸水层CO2地质储存属于环保型工程项目,开展地质评价来确定良好的储盖层是实现CO2地质储存长期、有效、安全封存的首要前提。储层地质评价内容主要包括储层的物理性质及其注入能力等;盖层地质评价内容主要包括盖层发育特征及封闭能力等。在规划选址到工程选址的不同阶段,储盖层评价的内容和对象应根据不同阶段的目的依次提高精度和量化程度。通过国内深部咸水层CO2地质储存工程场地选址阶段划分,结合储盖层地质评价的主要内容,初步建立了储盖层适宜性评价指标及其分级标准,对国内深部咸水层CO2地质储存工程场地选址中的储盖层地质评价及适宜性评价工作具有一定的指导意义。  相似文献   

4.
面对全球气候变化和能源紧缺的巨大压力,CO2地质利用技术成为研究的焦点。为了实现CO2减排及资源化利用,提出了利用超临界CO2增强卤水提取和地热能开采的CO2地质利用集成系统的概念。通过建立CO2注入热卤水储层的质量平衡模型,分析了不同流量的卤水生产、CO2注入以及储层边界流对储层变化的影响,初步评估了该系统的CO2封存量、卤水提取量以及储层流体组成变化的时间尺度。研究表明,注入CO2提供了热卤水层的压力维持,促进卤水和地热资源的可持续开采,对于江陵凹陷研究区9×108 m3的储层有效体积,注入9.95×106 t CO2可提取17.12×106 t卤水,时间尺度超过30a。对于50~1 000kg/s的卤水生产速度,可以产生0.9~18.8 MW电力。同时,该技术增加了CO2的封存容量和效率,有利于CO2大规模安全封存,经济和环境效益显著。  相似文献   

5.
二氧化碳地质封存联合深部咸水开采技术(CO2-EWR)被认为是有效的碳减排途径之一。在新疆准东地区率先开展CO2-EWR技术,可在实现CO2减排的同时获得咸水,在一定程度上缓解当地的水资源短缺问题,取得环境经济双重效益。以往研究大多以概化模型为主,缺乏工程实践依托,根据准噶尔盆地东部CO2源汇匹配适宜性评价结果,基于我国首个CO2-EWR野外先导性工程试验场地资料,构建拟选CO2-EWR场地西山窑组三维(3D)非均质模型开展了场地尺度CO2-EWR技术潜力研究。研究表明,拟选场地CO2理论封存量为1.72×106(P50)t,动态封存量为2.14×106 t。采用CO2-EWR技术可实现CO2动态封存量11.18×106 t,较单独CO2地质封存提升5.22倍,同时可增采咸水资源10.17×106 t,CO2采水比率为1∶0.91。同时,该技术可有效缓解因CO2大量注入引起的储层压力累积,提高CO2封存效率,增加咸水开采潜力。本研究可为新疆准东地区实施规模化CO2地质封存联合深部咸水开采工程提供理论依据和技术支撑。  相似文献   

6.
曹默雷  陈建平 《地质学报》2022,96(5):1868-1882
深部咸水层封存是目前最具前景的CO2地质封存方式。本文通过调研CO2地质封存相关文献,对CO2咸水层封存选址地质评价依据进行分类,总结咸水层封存涉及的定量研究方法并探讨目前CO2地质封存中的不确定性问题。主要认识有:① CO2咸水层封存选址的地质依据可根据在评价中的作用分为两类,第一类是用于可行性评价的通用依据,第二类是用于进一步筛选优选靶区的封存适宜性和安全性指标,其中封存适宜性评价针对的是更加细致的储层特征(相较于可行性评价),而安全性评价则集中在盖层适宜性、场地地震安全性、水文地质条件、地面场地地质条件、储层盖层空间分布和构造六个方面;② 封存潜力评价方面,大范围的可行性评价可首选资料要求较低的面积法进行封存潜力评价,对小范围的优选靶区采取精度更高的容积法和包含更多封存机制的容量系数法;③ 目前CO2地质封存中的不确定性问题主要在于相同依据在不同评价方面产生的不同影响、CO2- 水- 岩反应对储集物性的影响、研究发现的特殊现象、多场耦合模拟研究不系统以及封存潜力计算中参数不确定问题。  相似文献   

7.
许雅琴  张可霓  王洋 《岩土力学》2012,33(12):3825-3832
咸水层CO2地质封存是减少大气中CO2排放量的有效途径。CO2注入率是衡量咸水层中CO2注入能力的有效因素,因此,研究注入速率的变化规律及提高的措施是很有工程价值的。在很多区域,地层的低渗透性限制了CO2的注入率。针对鄂尔多斯盆地的水文地质条件,通过数值模拟,探讨在低渗透性咸水层中提高CO2注入率的途径,包括改变储层中的盐度、采用水平井注入、增加注入井段的长度以及采取水力压裂等工程措施。其中改变储层中的盐度可通过在注入CO2前向储层中注入一定量的水来实现。模拟结果表明,这些方式可以有效地提高CO2注入率,其中水平井改造方式和水力压裂工程措施效果显著,盐度改造措施在地层初始含盐度较高时,会有更好的效果。研究结果可为鄂尔多斯盆地和类似地区的咸水层CO2地质封存项目提供参考。  相似文献   

8.
赵锐锐  孟庆辉  成建梅 《岩土力学》2012,33(4):1247-1252
CO2地质封存是减少温室气体向大气排放的有效措施之一,而深部咸含水层CO2地质封存是目前可行的最有潜力的封存技术。先前研究表明,松辽盆地是一个潜在的封存场地。基于对松辽盆地地质资料的初步分析,选取三肇凹陷的姚家组1段和青山口组2、3段地层作为CO2的注入层,建立一个典型二维模型,研究CO2注入后的迁移规律。结果表明,CO2注入后会向上和侧向迁移,后期可能出现的对流作用能促进CO2的溶解。残留气体饱和度、注入层水平和垂直渗透率的比值对模拟结果影响最大。此外,储层中的薄页岩夹层有利于CO2的溶解,因此,在保证注入性和封存量的情况下,储层中低渗透性夹层是允许的。  相似文献   

9.
神华碳封存示范项目中CO2注入分布模拟   总被引:1,自引:0,他引:1  
CO2咸水层封存被广泛认为是一种具有大规模温室气体减排潜力的地学前缘技术。选取中国第一个全流程CCS项目为研究背景,结合工程实际情况,选取鄂尔多斯盆地为具体研究对象,提取相关参数,建立相应的地质模型,通过数值模拟研究咸水层多层统注时CO2在咸水中的主要封存机制、CO2在地层中的运移分布特征及其与注入能力的关系,并观测由于CO2注入引起的地层压力、CO2摩尔分数、酸碱度等的变化情况,为方案的进一步优化奠定基础。研究表明,CO2注入咸水层后,大部分进入储层上部,且注入能力越大时,注入的层位越多,注入量越大;CO2在咸水层中的存在形式有自由态、束缚态和溶解态。所有探索性研究的目的是给示范性项目的未来提供一个良好的基础优化方案。  相似文献   

10.
咸水层CO2地质封存技术是我国实现碳中和目标的重要支撑技术,也是一项深部地下空间开发利用技术。咸水层CO2地质封存工程利用的深部地下空间,需要在确定CO2羽流、扰动边界和经济因素“三级边界”的基础上进行综合评估。以我国唯一的深部咸水层CO2地质封存项目——国家能源集团鄂尔多斯碳捕集与封存(Carbon Capture and Storage, CCS)示范工程为实例,基于封存场地储层CO2羽流监测以及扰动边界的推断预测结果综合评估,认为示范工程平面上4个1'×1'经纬度范围可作为地下利用空间平面边界,垂向上以纸坊组顶界(深度约958 m)为地下封存体顶部边界,以深度2 800 m为底板封隔层底界。提出的咸水层CO2地质封存地下利用空间评估方法,能够为未来封存工程地下利用空间审批与监管提供一定参考,但也需要进一步结合已有法律法规及规模化封存工程实践完善提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号