首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the previous paper of this series, Deshpande & Rankin reported results regarding the sub-pulse drift phenomenon in pulsar B0943+10 at 430 and 111 MHz. This study has led to the identification of a stable system of sub-beams circulating around the magnetic axis of this star. Here, we present a single-pulse analysis of our observations of this pulsar at 35 MHz. The fluctuation properties seen at this low frequency, as well as our independent estimates of the number of sub-beams required and their circulation time, agree remarkably well with the reported behaviour at higher frequencies. We use the 'cartographic' transform mapping technique developed by Deshpande & Rankin in Paper I to study the emission pattern in the polar region of this pulsar. The significance of our results in the context of radio emission mechanisms is also discussed.  相似文献   

2.
This paper reports new observations of pulsar B0943+10 carried out at the Pushchino Radio Astronomy Observatory (PRAO) at the low radio frequencies of 42, 62 and 112 MHz. B0943+10 is well known for its exquisitely regular burst-mode (B-mode) drifting subpulses as well as its weaker and chaotic quiescent mode. Earlier Arecibo investigations at 327 MHz have identified remarkable, continuous changes in its B-mode subpulse drift rate and integrated-profile shape with durations of several hours. These PRAO observations reveal that the changes in profile shape during the B-mode lifetime are strongly frequency dependent – namely the measured changes in the component amplitude ratio are more dramatic at 327 and 112 MHz as compared with those at 62 and 42 MHz. The differences, however, are most marked during the first several tens of minutes after B-mode onset; after an hour or so the profile shape changes tend to be more similar at all four frequencies. We also have found that the linear polarization of the integrated profile increases continuously throughout the lifetime of the B mode, going from hardly 10 per cent just after onset to some 40–50 per cent after several hours. Pulsar B0943+10's B mode thus provides a unique new opportunity to investigate continuous systematic changes in the plasma flow within the polar flux tube. While refraction in the pulsar's magnetosphere may well play some role, we find that the various frequency-dependent effects, both between and within the two modes, can largely be understood geometrically. If the modes and B-mode decay reflect systematic variations in the carousel-'spark' radius and emission height then a specific set of profile and linear polarization changes would be expected.  相似文献   

3.
New Giant Metre-Wave Radio Telescope (GMRT) observations of the five-component pulsar B1857−26 provide detailed insight into its pulse-sequence modulation phenomena for the first time. The outer conal components exhibit a 7.4-rotation period, longitude-stationary modulation. Several lines of evidence indicate a carousel circulation time     of about 147 stellar rotations, characteristic of a pattern with 20 beamlets. The pulsar nulls some 20 per cent of the time, usually for only a single pulse, and these nulls show no discernible order or periodicity. Finally, the pulsar's polarization-angle traverse raises interesting issues: if most of its emission comprises a single polarization mode, the full traverse exceeds 180°; or if both polarization modes are present, then the leading and the trailing halves of the profiles exhibit two different modes. In either case, the rotating-vector model fails to fit the polarization-angle traverse of the core component.  相似文献   

4.
We present a detailed study of the single pulses of the bright radio pulsar B0834+06, and offer evidence that the dominant periodic modulation in this pulsar's emission governs the occurrence of nulls. The nulls of B0834+06 constitute approximately 9 per cent of the total pulses and we demonstrate that they do not occur at random in the pulse sequence. On the contrary, they are found to occur preferentially close to the minimum of the pulsar's emission cycle, whose period jitters around a central value of P 3≈ 2.17 rotation periods. It is likely that the intrinsic duration of the nulls averages about 0.2 times the pulsar rotation period. Surprisingly, the clearly distinct population of nulls and partial nulls of B0834+06 exhibit a two-peak profile slightly broader than that of the normal emission. This is in contrast to the profile of extremely weak normal pulses, which is narrower than the overall profile. A flow/counterflow model for the pulsar's two components can reproduce the essential observed features of the emission in its dominant mode, with nulls occurring at the point where the minima of the two systems are aligned. This suggests that the observed nulling rate is determined by the chance positioning of our sightline with respect to the system. If the flow is interpreted as part of a circulating carousel, a fit yields a best estimate of 14 'sparks'.  相似文献   

5.
6.
Pulsar nulling is not always a random process; most pulsars, in fact, null non-randomly. The Wald–Wolfowitz statistical runs test is a simple diagnostic that pulsar astronomers can use to identify pulsars that have non-random nulls. It is not clear at this point how the dichotomy in pulsar nulling randomness is related to the underlying nulling phenomenon, but its nature suggests that there are at least two distinct reasons that pulsars null.  相似文献   

7.
Analyses of multiple pulse sequences of the pulsar PSR B2303+30 reveal two distinct emission modes. One mode (B) follows a steady even–odd pattern and is more intense. The second mode (Q) is characteristically weak, but has intermittent drift bands with a periodicity of approximately 3 P 1/cycle, and nulls much more frequently than the B mode. Both modes occur with roughly equal frequency, and their profiles have a similar single-humped form with a slight asymmetry. Our observations and analyses strongly suggest that the subpulse drift rates in both modes are linked in a series of cycles, which can be modelled as relaxing oscillations in the underlying circulation rate.  相似文献   

8.
9.
10.
11.
We present an empirical model for single pulses of radio emission from pulsars based on Gaussian probability distributions for relevant variables. The radiation at a specific pulse phase is represented as the superposition of radiation in two (approximately) orthogonally polarized modes (OPMs) from one or more subsources in the emission region of the pulsar. For each subsource, the polarization states are drawn randomly from statistical distributions, with the mean and the variance on the Poincaré sphere as free parameters. The intensity of one OPM is chosen from a lognormal distribution, and the intensity of the other OPM is assumed to be partially correlated, with the degree of correlation also chosen from a Gaussian distribution. The model is used to construct simulated data described in the same format as real data: distributions of the polarization of pulses on the Poincaré sphere and histograms of the intensity and other parameters. We concentrate on the interpretation of data for specific phases of PSR B0329+54 for which the OPMs are not orthogonal, with one well defined and the other spread out around an annulus on the Poincaré sphere at some phases. The results support the assumption that the radiation emerges in two OPMs with closely correlated intensities, and that in a statistical fraction of pulses one OPM is invisible.  相似文献   

12.
13.
We present a geometric study of the radio and γ-ray pulsar B1055−52 based on recent observations at the Parkes radio telescope. We conclude that the pulsar's magnetic axis is inclined at an angle of 75° to its rotation axis and that both its radio main pulse and interpulse are emitted at the same height above their respective poles. This height is unlikely to be higher or much lower than 700 km, a typical value for radio pulsars.
It is argued that the radio interpulse arises from emission formed on open fieldlines close to the magnetic axis which do not pass through the magnetosphere's null (zero-charge) surface. However, the main pulse emission must originate from fieldlines lying well outside the polar cap boundary beyond the null surface, and farther away from the magnetic axis than those of the outer gap region where the single γ-ray peak is generated. This casts doubt on the common assumption that all pulsars have closed, quiescent, corotating regions stretching to the light cylinder.  相似文献   

14.
15.
16.
In this paper we report multifrequency single-pulse polarization observations of the PSR B0329+54 normal mode using the Giant Metre-wave Radio Telescope at 325 and 610 MHz and the Effelsberg Observatory at 2695 MHz. Our observations show that towards the central part of the polarization position angle traverse there is an unusual 'arc'-like structure, which comprises a broad-band 'kink' and a frequency-dependent 'spot'. The features are intimately connected with the intensity dependence of the core component: the stronger emission arrives earlier and its linear polarization is displaced farther along the 'kink'. Moreover, at high intensities, the circular polarization is −/+ antisymmetric; the nearly complete positive circular is characteristic of the weaker, later core subpulses. We find that the 'kink' emission is associated with the extraordinary (X) propagation mode, and hence propagation effects do not appear to be capable of producing the core component's broad-band, intensity-dependent emission. Rather, the overall evidence points to a largely geometric interpretation in which the 'kink' provides a rare glimpse of the accelerating cascade or height-dependent amplifier responsible for the core radiation.  相似文献   

17.
18.
19.
The linear polarization of the Crab pulsar and its close environment was derived from observations with the high-speed photopolarimeter Optical Pulsar TIMing Analyser at the 2.56-m Nordic Optical Telescope in the optical spectral range (400–750 nm). Time resolution as short as 11 μs, which corresponds to a phase interval of 1/3000 of the pulsar rotation, and high statistics allow the derivation of polarization details never achieved before. The degree of optical polarization and the position angle correlate in surprising details with the light curves at optical wavelengths and at radio frequencies of 610 and 1400 MHz. Our observations show that there exists a subtle connection between presumed non-coherent (optical) and coherent (radio) emissions. This finding supports previously detected correlations between the optical intensity of the Crab and the occurrence of giant radio pulses. Interpretation of our observations requires more elaborate theoretical models than those currently available in the literature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号