首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三门湾沿海声层析潮流观测实验   总被引:3,自引:0,他引:3       下载免费PDF全文
2009年9月6日至9日在三门湾进行了沿海声层析(Coastal Acoustic Tomography,CAT)潮流观测实验.实验由7台沿海声层析仪组网进行,并分别由渔船定点抛锚于7个站位.实验期间,还进行了定点ADCP(Acoustic Doppler Current Profiler)观测.通过建立逆模式对声传播时间差进行解析,引入权重因子,用L-curve法确定阻尼因子的最佳值,继而根据阻尼最小二乘法得到流速的最佳解.根据逆模式得到的流速分布可知该海区的潮流以半日潮(M2)为主,M2潮流椭圆呈东南-西北走向,潮流基本都是顺着水道,即涨潮为西北流向,退潮为东南流向.西北向与东南向最大流速分别为1.03m·s-1和1.09m·s-1.实验期间该区域的余流是从湾外流入湾内,平均流速约为0.05m·s-1.CAT与定点ADCP流速的东分量和北分量的均方差均小于0.18m·s-1.这样大面积的潮流和余流水平分布的同步观测,用传统观测手段很难实现.通过以上结果可以得出,沿海声层析技术可以作为一种新的测流方法对强潮海区进行大面积潮流观测,可在我国沿海的海洋环境监测等方面发挥重要作用.  相似文献   

2.
A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.  相似文献   

3.
Summary Four hourly current-and wind observations during the years 1924–1927 at the German lightvessels Norderney, Elbe 1, and Aussen-Eider were subjected to harmonic analysis with emphasis on the influence of the wind on the residual as well as on the tidal current. The tidal current is strongest at Elbe 1 and weakest at Aussen-Eider. The half-monthly inequality of the current is strongly influenced by a 2 tidal component. Wind influences the velocity, phase and duration of ebb-and flow current in a systematic way at Norderney and Elbe 1. Deviations from the mean tidal current are caused mainly by the change in wind direction rather than by wind velocity. The mean residual current is weak at the three stations. But wind driven currents have a velocity up to 5 times as great as the mean residual current and reverse their direction with the wind. The annual variation of the mean residual current, however, is caused only to a small part by the annual wind variation.Abbreviations used in this paper Gr. M. Tr. Greenwich moon transit, i.e. Greenwich civil time of the upper or lower transit of the moon through the meridian of Greenwich - C n computed tidal current at M1/2Hn - C n m computed mean tidal current at M1/2Hn - M n Moon-half hour mean, i.e. mean of all current velocities observed during M1/2Hn - M.A. Moon age of an observation, true Greenwich time of Gr.M.Tr. directly preceeding the time of observation, expressed in 12 integral numbers, each representing M.A. falling in 12 different hourly intervals - M1/2H Moon-half hour, 1/2 of the interval between one moon transit and the next, i.e. 1/24 of 12h25m - R n o ,R n ' ,R n " residual current computed by harmonic analysis ofn M1/2H means of the mean current, the current at weak winds, and the current at strong winds respectively - d.o.f. degrees of freedom - standard deviation ofC n fromM n - * mean standard deviation ofC n fromM n for analysis with weighted means - A o Standard error of the residual currentA o - AB standard error of the harmonic coefficientsA 1,B 1,A 2,B 2,... - S 2 Phase of the current componentS 2  相似文献   

4.
《Continental Shelf Research》1987,7(10):1139-1159
Princess Charlotte Bay, located on the northern Great Barrier Reef, is an environment of terrigenous and carbonate deposition. The dynamics on this shelf are controlled by the Great Barrier Reef at the edge of the shelf, and the mid-shelf, shore-normal reefs. This study examines the dynamics during the dry season, with six time-series records from instrumented tripod deployments and numerous hydrographic stations.The shallow nearshore waters and the estuaries prove to be the sites where most active sediment resuspension and transport takes place. Sediment resuspension is effected primarily by waves in the nearshore, and channeling of tidal currents in the estuaries. Bedload transport did not occur during this study, mainly because current velocities were too low. Suspended particulate matter (SPM) transport in the bay is governed by tides and winds. Strong tidal flow imparts a strong offshore component to the transport, and strong southeast winds impart an alongshore component that transports SPM out of the bay to the northwest. Rattlesnake Channel, east of Princess Charlotte Bay, is another route by which SPM leaves the bay. Flow through this channel is predominantly tidal, with ebb waters (leaving Princess Charlotte Bay) carrying higher SPM concentrations than flood waters.SPM flux in the nearshore was an order of magnitude higher than at offshore stations, with highest fluxes generally occurring at times of sustained southeast winds. Transect data show that SPM drops to average bay values in water 11 m deep, indicating most SPM is transported in nearshore waters.  相似文献   

5.
Understanding sediment sorting and bedding dynamics has high value to unravelling the mechanisms underlying geomorphological, geological, ecological and environmental imprints of tidal wetlands and hence to predicting their future changes. Using the Nanhui tidal flat on the Changjiang (Yangtze) Delta, China, as a reference site, this study establishes a schematized morphodynamic model coupling flow, sediment dynamics and bed level change to explore the processes that govern sediment sorting and bedding phenomena. Model results indicate an overall agreement with field data in terms of tidal current velocities, suspended sediment concentrations (SSCs), deposition thicknesses and sedimentary structures. Depending on the variation of tidal current strength, sand-dominated layers (SDLs) and mud-dominated layers (MDLs) tend to form during spring and neap tides, respectively. Thinner tidal couplets are developed during daily scale flood–ebb variations. A larger tidal level variation during a spring–neap tidal cycle, associated with a stronger tidal current variation, favours the formation of SDLs and tidal couplets. A larger boundary sediment supply generally promotes the formation of tidal bedding, though the bedding detail is partially dependent on the SSC composition of different sediment types. Sediment properties, including for example grain size and settling velocity, are also found to influence sediment sorting and bedding characteristics. In particular, finer and coarser sediment respond differently to spring and neap tides. During neap tides, relatively small flow velocities favour the deposition of finer sediment, with limited coarser sediment being transported to the upper tidal flat because of the larger settling velocity. During spring tides, larger flow velocities transport more coarser sediment to the upper tidal flat, accounting for distinct lamination formation. Model results are qualitatively consistent with field observations, but the role of waves, biological processes and alongshore currents needs to be included in further studies to establish a more complete understanding.  相似文献   

6.
Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45′ N), where the highest tidal velocities in spring tides were ~?1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.  相似文献   

7.
The hydrodynamics of a small tributary channel and its adjacent mudflat is studied in Willapa Bay, Washington State, USA. Velocity profiles and water levels are simultaneously measured at different locations in the channel and on the mudflat for two weeks. The above tidal flat and channel hydrodynamics differ remarkably during the tidal cycle. When the water surface level is above the tidal flat elevation, the channel is inactive. At this stage, the above tidal flat flow is predominantly aligned along the Bay axis, oscillating with the tide as a standing wave with peak velocities up to 0.3 m/s. When the mudflat becomes emergent, the flow concentrates in the channel. During this stage, current velocities up to 1 m/s are measured during ebb; and up to 0.6 m/s during flood. Standard equations for open-channel flow are utilized to study the channel hydrodynamics. From the continuity equation, a lateral inflow is predicted during ebb, which likely originates from the drainage of the mudflat through the lateral runnels. Both advective acceleration and lateral discharge terms, estimated directly from the velocity profiles, play a significant role in the momentum equation. The computed drag coefficient for bottom friction is small, due to an absence of vegetation and bottom bedforms in the channel. Sediment fluxes are calculated by combining flow and suspended sediment concentration estimated using the acoustic backscatter signal of the instruments. A net export of the sediment from the channel is found during ebb, which is not balanced by the sediment import during flood. When the mudflat is submerged, ebb-flood asymmetries in suspended sediment concentration are present, leading to a net sediment flux toward the inner part of the Willapa Bay. Finally, a residual flow is detected inside the channel at high slack water, probably associated with the thermohaline circulation.  相似文献   

8.
The response of tidal and residual currents to small-scale morphological differences over abrupt deep-sea topography (Seine Seamount) was estimated for bathymetry grids of different spatial resolution. Local barotropic tidal model solutions were obtained for three popular and publicly available bathymetry grids (Smith and Sandwell TOPO8.2, ETOPO1, and GEBCO08) to calculate residual currents from vessel-mounted acoustic Doppler current profiler (VM-ADCP) measurements. Currents from each tidal solution were interpolated to match the VM-ADCP ensemble times and locations. Root mean square (RMS) differences of tidal and residual current speeds largely follow topographic deviations and were largest for TOPO8.2-based solutions (up to 2.8 cm?s?1) in seamount areas shallower than 1,000 m. Maximum RMS differences of currents obtained from higher resolution bathymetry did not exceed 1.7 cm?s?1. Single depth-dependent maximum residual flow speed differences were up to 8 cm?s?1 in all cases. Seine Seamount is located within a strong mean flow environment, and RMS residual current speed differences varied between 5 % and 20 % of observed peak velocities of the ambient flow. Residual flow estimates from shipboard ADCP data might be even more sensitive to the choice of bathymetry grids if barotropic tidal models are used to remove tides over deep oceanic topographic features where the mean flow is weak compared to the magnitude of barotropic tidal, or baroclinic currents. Realistic topography and associated flow complexity are also important factors for understanding sedimentary and ecological processes driven and maintained by flow–topography interaction.  相似文献   

9.
通过对汶川8.0级地震前,龙门山地区小震活动与月球上中天、下中天时刻对应关系的讨论,得到龙门山小震活动与月球引潮力的低潮对应关系不明显.另外,对龙门山小震与固体潮理论曲线对应的讨论,得到每组小震的头震在接近固体潮曲线的谷底发生,即地震的发生与固体潮的低潮有关.在临近大震前,地震多发生在固体潮曲线的上升部位,即引潮力增长...  相似文献   

10.
Tidal and residual currents in the Bransfield Strait,Antarctica   总被引:1,自引:0,他引:1  
During the 1992–1993 oceanographic cruise of the Spanish R/V Hespérides, recording equipment was deployed in the Bransfield Strait. Six Aanderaa RCM7 current meters and three Aanderaa WLR7 tide gauges were successfully recovered after an operation period of 2.5 months. Relevant features of the time series obtained are presented and discussed in this paper. The emphasis is placed on the tidal character of the currents and the relative importance of tidal flow in the general hydrodynamics of the strait. For these purposes a dense grid of hydrographic stations, completed during the BIOANTAR 93 cruise, is used. Preliminary geostrophic calculations relative to a 400 m depth, yield current velocities of around 0.20 m s−1 in the study area, whereas the magnitude of tidal currents is seen to be 0.30-0.40 m s−1.  相似文献   

11.
Secondary circulation is the component of three‐dimensional (3D) flow in river channels perpendicular to the primary flow direction. Secondary circulation calculated from acoustic Doppler current profiler (ADCP) transects is sensitive to the calculation method and is affected by the transect angle relative to the mean flow direction and variations in the flow direction along a transect. To quantify bounds on transect alignment relative to river flow for field data collection and examine tidal time‐scale variability in secondary circulation, the 3D hydrodynamic model UnTRIM was applied to simulate the hydrodynamics in the lower reach of the Sacramento River (CA, USA). Secondary circulation was calculated using the Rozovskii and the zero net discharge methods on repeated transects extracted from the model results in regions of both relatively uniform and complex flows. When the depth‐averaged flow direction along a transect varied by more than about 5 °, occurring when the transect was as little as 10 to 20 ° out of normal to the mean flow direction, the Rozovskii method produced more realistic secondary circulation than the zero net discharge method. Analysis indicated that ADCP transects should be within 20 ° of perpendicular to the mean flow direction when calculating secondary circulation. Secondary circulation strength around two tidally influenced bends generally increased with increasing flow and broke down near slack water. However, the strength of the secondary circulation was not only a function of the flow magnitude, but also depended on the direction of the water flow and the transect location relative to the river curvature, which varied with the tidal flow direction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
We deployed bottom-mounted quadrapod equipped with acoustic Doppler current profiler (ADCP), acoustic Doppler velocimeter (ADV), and optical backscatter sensor (OBS) over two semidiurnal tidal cycles along the western coast of the Yellow Sea, China. In combination with shipboard profiling of CTD and LISST-100, we resolved the temporal and spatial distributions of tidal currents, turbulent kinetic energy (TKE), suspended sediment concentration (SSC) and particle size distributions. During the observations, tidal-induced bottom shear stress was the main stirring factor. However, weak tidal flow during the ebb phase was accompanied by two large SSC and median size events. The interactions of seiche-induced oscillations with weak ebb flow induced multiple flow reversals and provided a source of turbulence production, which stripped up the benthic fluff layers (only several millimeters) around the Jiaozhou Bay mouth. Several different methods for inferring mean suspended sediment settling velocity agreed well under peak currents, including estimates using LISST-based Stokes’ settling law, and ADCP-based Rouse profiles, ADV-based inertial-dissipation balance and Reynolds flux. Suspended particles in the study site can be roughly classified into two types according to settling behavior: a smaller, denser class consistent with silt and clay and a larger, less dense class consistent with loosely aggregated flocs. In the present work, we prove that acoustic approaches are robust in simultaneously and non-intrusively estimating hydrodynamics, SSC and settling velocities, which is especially applicable for studying sediment dynamics in tidal environments with moderate concentration levels.  相似文献   

13.
垂向和径向排水的潮汐水位振幅和位相变化研究   总被引:1,自引:0,他引:1  
刘春平  唐彦东  廖欣 《地震》2011,31(4):68-76
本文根据岩石力学和地下水动力学理论, 分析了潮汐力作用下含水层与隔水层之间垂向水流交换过程, 并提出了垂向排水条件下含水层潮汐孔压-引潮高振幅比和位相差公式。 结合Hsieh等关于潮汐力作用下井水位对含水层孔压(体应变)的振幅比和位相差响应公式, 进一步推导了垂向和径向水流条件下井水位-引潮高的振幅比和位相差公式。 在径向和垂向排水条件下, 应用M2和O1波潮汐水位-引潮高振幅比和位相差的数值关系, 可以识别影响潮汐水位振幅和位相的主要因素。  相似文献   

14.
Over the past 30 years, reclamation projects and related changes have impacted the hydrodynamics and sediment transport in the Bohai Sea. Three-dimensional tidal current models of the Bohai Sea and the Yellow Sea were constructed using the MIKE 3 model. We used a refined grid to simulate and analyze the effects of changes in coastline, depth, topography, reclamation, the Yellow River estuary, and coastal erosion on tidal systems, tide levels, tidal currents, residual currents, and tidal fluxes. The simulation results show that the relative change in the amplitude of the half-day tide is greater than that of the full-day tide. The changes in the tidal amplitudes of M2, S2, K1, and O1 caused by coastline changes accounted for 27.76–99.07% of the overall change in amplitude from 1987 to 2016, and water depth changes accounted for 0.93–72.24% of the overall change. The dominant factor driving coastline changes is reclamation, accounting for 99.55–99.91% of the amplitude changes in tidal waves, followed by coastal erosion, accounting for 0.05–0.40% of the tidal wave amplitude changes. The contribution of changes in the Yellow River estuary to tidal wave amplitude changes is small, accounting for 0.01–0.12% of the amplitude change factor. The change in the highest tide level (HTL) is mainly related to the amplitude change, and the correlation with the phase change is small. The dominant factor responsible for the change in the HTL is the tide amplitude change in M2, followed by S2, whereas the influence of the K1 and O1 tides on the change in the HTL is small. Reclamation resulted in a decrease in the vertical average maximum flow velocity (VVAM) in the Bohai Sea. Shallower water depths have led to an increase in the VVAM; deeper water depths have led to a decrease in the maximum flow velocity. The absolute value of the maximum flow velocity gradually decreases from the surface to the bottom, but the relative change value is basically constant. The changes in the tidal dynamics of the Bohai Sea are proportional to the degree of change in the coastline. The maximum and minimum changes in the tidal flux appear in Laizhou Bay (P-LZB) and Liaodong Bay (P-LDB), respectively. The changes in the tidal flux are related to the change in the area of the bay. Due to the reduced tidal flux, the water exchange capacity of the Bohai Sea has decreased, impacting the ecological environment of the Bohai Sea. Strictly controlling the scale of reclamation are important measures for reducing the decline in the water exchange capacity of the Bohai Sea and the deterioration of its ecological environment.  相似文献   

15.
Two 24-h surveys were conducted in St. Andrew Bay, Florida, during spring and neap tides to describe the tidal and non-tidal circulation patterns and to determine the factors that affect these patterns. In particular, the effect of tidal forcing in modulating such circulation patterns was explored. Observed velocities were fitted to diurnal and semidiurnal harmonics separating tidal motions from sub-tidal motions. Residual flows were compared with an analytic model that allowed variations in the relative contributions from Coriolis acceleration and friction using the Ekman number. A solution with an Ekman number of 0.04 resembled the observations best and indicated that the hydrodynamics were governed by pressure gradient, Coriolis and friction. Locally, advective accelerations became important around headlands in sub-estuaries in the system. The consistency of the mean pattern from October to March suggests that tides play a minor role in modulating the exchange flow. Deviations from the long-term mean are mainly caused by wind-driven coastal setup and setdown.  相似文献   

16.
We conducted various field studies at the seawater intrusion monitoring wells located in the eastern part of Jeju Island, Korea, to observe the tidal effect on groundwater–seawater flow in the coastal aquifer. Studies included monitoring the fluctuations of groundwater and tide levels, electrical and temperature logging, and 2-D heat-pulse flowmeter tests. According to time-series analysis, tidal effects on groundwater level reached up to 3 km inland from the coastline. Water-level variation was more sensitive to tidal fluctuations near the coast, and more related to rainfall toward inland areas. Temporal and spatial variations in the shape and location of the freshwater–saltwater interface were analyzed using data from nine monitoring wells. The results indicated that the interface toe is located at a distance of 6–8 km from the coastline and its location was related to geological layers present. Long-term seasonal variations revealed no major changes in the interface; minor variations were due to moving boundary conditions induced by tidal fluctuations. Using the two-dimensional heat-pulse flowmeter, groundwater flow directions and velocities at four tidal stages were measured on three monitoring wells drilled into the multilayered aquifers. This direct measurement enabled us to relate the differences of flow velocities and directions with geology and tidal fluctuations. Combining the results of EC logging and flowmeter tests, we found a zone where freshwater and saltwater moved alternately in opposite directions, as influenced by the tidal fluctuations. Integrating various physical logging and flowmeter data with water-level fluctuations improved our understanding of the behavior of fresh and seawater flow in the coastal aquifers.  相似文献   

17.
Abstract

A depth-dependent model for the topographic rectification of tidal currents in a homogeneous rotating fluid is used to examine the dependence of the rectified mean flow on various tidal, topographic and frictional parameters. Friction is parameterized through a vertically-uniform, time-independent vertical eddy viscosity and a bottom stress law applied near the top of the constant stress layer. The model neglects the interaction of mean and tidal currents, assumes uniformity along isobaths, and is closed with the assumption of zero depth-averaged mean flow across isobaths.

In the limit of depth-independence, the model reduces to that considered by Huthnance (1973) and Loder (1980) which, for weak friction, favours anticyclonic mean circulation around shallow regions and Lagrangian flow which is significantly reduced from the Eulerian. With the inclusion of vertical structure, the magnitude of the anticyclonic flow is amplified suggesting that depth-independent models may underestimate the along-isobath flow. For strong friction the direction of the mean flow depends on the orientation of the tidal ellipse relative to the isobaths. The depthindependent model again underestimates the magnitude of the along-isobath flow, but this can be offset with an appropriate reduction of the bottom friction coefficient.

The cross-isobath mean flows are one to two orders of magnitude weaker than the along-isobath flows and generally have more vertical structure. There is also a significant Stokes drift in the cross-isobath direction. Although there is some tendency for the cross-isobath mean bottom current to be down the cross-isobath mean pressure gradient, it appears that it is not generally possible to infer this current from depth-independent models.  相似文献   

18.
Lagrangian drifters, moored acoustic Doppler current meters and hydrographic observations are combined with wind observations to describe the mean and variable nature of flow around Kapiti Island, New Zealand. Thirteen day-long deployments of up to six Lagrangian drifters show the mean flow is to the southwest, with evidence of stronger flows in the channel separating the island from the mainland, and an island wake in the lee of the island. Vortices in this island wake may be tidally driven. Scaling considerations suggest the flow is strong enough that tidal-generated vortices are shed on each tidal cycle. Both the drifters and mooring data suggest that the d’Urville Current around Kapiti Island has a significant wind-driven component. During north-westerlies, the drifters tend to hug the coast, and south-eastwards flows in the Rauoterangi Channel are accelerated. We suggest the observed correlation is the local expression of a South Taranaki basin scale response to the winds.  相似文献   

19.
The residual circulation over the continental slope, and in particular, its vertical structure, is analysed by means of an idealised hydrodynamic model. The model is based on the depth-dependent shallow-water equations under uniform along-isobath conditions and is forced by a prescribed meridional density gradient and tidal velocities. By means of expansion in the small Rossby number solutions are analysed for conditions representative for the continental slopes off the Hebrides and in the Bay of Biscay. The steady solution at zeroth order consists of a linear density-driven flow. At order a tidally rectified flow is found and a stationary flow due to self-interaction of the zeroth-order density-driven flow. At order 2 the leading-order effect of the interaction between the zeroth-order density-driven flow and the tides is found: the ‘interaction current’. The solutions up to and including order 2 constitute an along-isobath steady slope current which is comparable to field data. The slope current and the accompanying cross-shelf circulation depend strongly on the shelf and flow characteristics. For the Hebridean case the density forcing predominates, but for the Biscay case the tidal effects are of the same order of magnitude as the density effects. Under those conditions the interaction current is significant which implies that linear superposition of density and tidal effects differs from the non-linear combination of both. It is also shown that the depth-average of the interaction current differs essentially from the solution obtained from a depth-averaged model.  相似文献   

20.
Spatial and temporal variability of the subtidal exchange flow at West Pass, an inlet at the entrance to a subtropical lagoon (St. Andrew Bay, Florida), was studied using moored and towed current velocity profiles and hydrographic data. Towed and hydrographic measurements were captured over one diurnal tidal cycle to determine intratidal and spatial changes in flow. Hydrographic profiles over the tidal cycle showed that tidal straining modified density stratification asymmetrically, thus setting up the observed mean flow within the inlet. During the towed survey, the inlet's mean flow had a two-layer exchange structure that was moderately frictional and weakly influenced by Coriolis accelerations. Moored current profiles revealed the additional contribution to the dynamics from centrifugal accelerations. Along channel residual flows changed between unidirectional and exchange flow, depending on the forcing from the along-estuary wind stress and, to a lesser extent, the spring–neap tidal cycle. Increases in vertical shear in the along channel subtidal flow coincided with neap tides and rain pulses. Lateral subtidal flows showed the influence on the dynamics of centrifugal accelerations through a well-developed two-layer structure modulated in magnitude by the spring–neap tidal cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号