首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The northwest African margin has been affected by numerous large-scale landslides during the late Quaternary. This study focuses on a recent collapse of the Sahara Slide headwall and characterises the resulting flow deposit. Core and seismic data from the base of the upper headwall reveal the presence of blocky slide debris, comprising heavily deformed hemipelagic slope sediments. The blocky slide debris spilled over a lower headwall 60 km downslope and formed a thick transparent debris flow unit. Cores recovered 200–250 km farther downslope contain a surficial turbidite that is interpreted to be linked to the headwall collapse event based on timing and composition. One core located approximately 200 km from the headwall scar (C13) contains debrite encased in turbidite. The debrite comprises sheared and contorted hemipelagic mudstone clasts similar as those seen in the vicinity of the Sahara Slide headwall, and lacks matrix. This debrite pinches out laterally within 25 km of C13, whereas the accompanying turbidite can be correlated across 700 km of the northwest African margin. The linked turbidite–debrite bed is interpreted to have formed through recent failure of the steep Sahara Slide headwall that either 1) generated both a debris flow and a turbidity current almost simultaneously, or 2) generated a debris flow which with entrainment of water and progressive dilution led to formation of an accompanying turbidity current.  相似文献   

2.
The Wadden Sea (North Sea, Europe) is a shallow coastal sea with high benthic and pelagic primary production rates. To date, no studies have been carried out in the Wadden Sea that were specifically designed to study the relation between pelagic respiration and production by comparable methods. Because previous studies have suggested that the import of primary-produced pelagic organic matter is important for benthic Wadden Sea carbon budgets, we hypothesised that on an annual average the northern Wadden Sea water column is autotrophic. To test this hypothesis, we studied annual dynamics of primary production and respiration at a pelagic station in a shallow tidal basin (List Tidal Basin, northern Wadden Sea). Since water depth strongly influences production estimates, we calculated primary production rates per unit area in two ways: on the basis of the mean water depth (2.7 m) and on the basis of 1 m depth intervals and their respective spatial extent in the List Tidal Basin. The latter more precise estimate yielded an annual primary production of 146 g C m− 2 y− 1. Estimates based on the mean water depth resulted in a 40% higher annual rate of 204 g C m− 2 y− 1. The total annual pelagic respiration was 50 g C m− 2 y− 1. The P/R ratio varied between seasons: from February to October the water column was autotrophic, with the highest P/R ratio of 4–5 during the diatom spring bloom in April/May. In autumn and winter the water column was heterotrophic. On an annual average, the water column of the List Tidal Basin was autotrophic (P/R 3). We suggest that a large fraction of the pelagic produced organic matter was respired locally in the sediment.  相似文献   

3.
The spatial distributions of dissolved manganese and nutrients were examined in the Columbia River plume off Oregon and Washington during the summer of 2004 and 2005 as part of the River Influence on Shelf Ecosystems (RISE) program. Factors influencing the hydrochemical characteristics of the freshly formed and aged Columbia River plume were investigated. Hydrographic data and nutrient concentrations were used to delineate three distinct water sources for the Columbia River Plume: California Current surface water, coastal upwelled water, and Columbia River water. The warm, intermediate salinity, nutrient poor California Current water contains low levels of dissolved manganese (< 5 nM) and silicic acid (< 5 μM), and is depleted in nitrate. The cold, high salinity, nutrient rich, freshly upwelled water is highly variable (2–20 nM) in dissolved manganese and can be as high as  45 μM in silicic acid and  30 μM nitrate. The variable Columbia River has summer temperatures ranging from  13 to 24 °C, high silicic acid concentrations (ranging from  120 to 200 μM), and lower nitrate concentrations (ranging from  2 to 20 μM). During the summer, the concentrations of silicic acid and dissolved manganese can exceed 100 μM and 200 nM, respectively, in near-field Columbia River plumes. These values are markedly greater than those of surface coastal waters (even during upwelling conditions). As the plume advects and mixes, the concentrations of these two constituents remain relatively high within plume waters. The concentrations of dissolved manganese in the near-field plume vary with tidal amplitude, exhibiting much higher concentrations for a given salinity during spring tides than during neap tides. For example, the Columbia River plume at a salinity of 20 has a concentration of dissolved manganese of  240 nM during spring tides, as compared to only  60 nM during low amplitude tides. Silicic acid concentrations in the near-field plume remain relatively constant throughout the tidal month. Calculations indicate there is roughly an equivalent yearly delivery of dissolved manganese and silicic acid to the coastal waters off Oregon and Washington by upwelled waters and by the Columbia River plume.  相似文献   

4.
Jingfeng Wu   《Marine Chemistry》2007,103(3-4):370-381
A low-blank pre-concentration procedure is described for the analysis of picomolar iron (Fe) in seawater by isotope dilution high-resolution inductively coupled plasma mass-spectrometry (HR-ICPMS). The procedure uses a two-step Mg(OH)2 co-precipitation procedure to extract Fe from a 50 ml seawater sample into a 100 μl 4% nitric acid (HNO3) solution followed by HR-ICPMS measurement. The high pre-concentration ratio ( 500:1) achieved by the procedure minimizes the Fe blank due to ICPMS instrumental Fe background and results in a detection limit of  2 pM and a precision of  4% at the 50 pM Fe level. The measurement of a low-Fe seawater sample spiked with gravimetric Fe standard shows that the method can clearly distinguish 0.01 nM Fe from 0.02 nM Fe in seawater with high accuracy. The method is demonstrated by the analysis of dissolved Fe in the equatorial Pacific Ocean.  相似文献   

5.
The chemical speciation of copper in the estuarine waters of the Vigo Ria was determined by titrations with salicylaldoxime (reverse copper titrations) and with copper (forward titrations). The forward titrations quantified the concentrations of ligands present in excess whereas the reverse titrations demonstrated the presence of low concentrations of very strong binding ligands, approximately matching the copper concentration. The data obtained by the reverse titrations indicated that copper was about 10× stronger bound than data based on the usual forward titrations.The copper concentration in these ria waters was low at 5 nM with a minor mid-estuarine maximum of 8 nM. These copper levels are amongst the lowest reported for estuarine waters and therefore represent uncontaminated waters. The concentration of inorganic copper was very low across the ria at  10–100 fM, except at Bouzas harbour (salinity 35.5) where it was raised to  1 pM due to copper contamination, in waters affected by the port facilities, to total levels of 15 to 20 nM copper, exceeding the concentration of the very strong ligand detected by the reverse titrations.  相似文献   

6.
Dissolved Cd (CdD) concentrations along the salinity gradient were measured in surface water of the Gironde Estuary during 15 cruises (2001–2007), covering a wide range of contrasting situations in terms of hydrology, turbidity and season. During all situations dissolved Cd concentrations displayed maximum values in the mid-salinity range, reflecting Cd addition by chloride-induced desorption and complexation. The daily net CdD fluxes from the Gironde Estuary to the coastal ocean were estimated using Boyle's method. Extrapolating CdD concentrations in the high salinity range to the freshwater end member using a theoretical dilution line produced 15 theoretical Cd concentrations (CdD0), each representative of one distinct situation. The obtained CdD0 concentrations were relatively similar (201 ± 28 ng L−1) when freshwater discharge Q was >500 m3 s−1 (508 ≤ Q ≤ 2600 m3 s−1), but were highly variable (340 ± 80 ng L−1; 247–490 ng L−1) for low discharge situations (169 ≤ Q ≤ 368 m3 s−1). The respective daily CdD net fluxes were 5–39 kg day−1, mainly depending on freshwater discharge. As this observation invalidates the existing method of estimating annual CdD net fluxes, we proposed an empirical model, using representative CdD0 values and daily freshwater discharges for the 2001–2007 period. Subsequent integration produced reliable CdD net flux estimates for the Gironde Estuary at the annual timescale that ranged between 3.8–5.0 t a−1 in 2005 and 6.0–7.2 t a−1 in 2004, depending on freshwater discharge. Comparing CdD net fluxes with the incoming CdD fluxes suggested that the annual net CdD addition in the Gironde Estuary ranged from 3.5 to 6.7 t a−1, without any clear temporal trend during the past seven years. The annual CdD net fluxes did not show a clearly decreasing trend in spite of an overall decrease by a factor 6 in Cd gross fluxes during the past decade. Furthermore, in six years out of seven (except 2003), the annual CdD net fluxes even exceeded river borne total (dissolved + particulate) gross Cd fluxes into the estuary. These observations were attributed to progressive Cd desorption from both suspended particles and bottom sediment during various sedimentation–resuspension cycles induced by tidal currents and/or continuous dredging (navigation channel) and diverse intra-estuarine sources (wet deposition, urban sources, and agriculture). Provided that gross fluxes remain stable over time, dissolved Cd exportation from the Gironde Estuary to the coastal ocean may remain at the present level for the coming decade and the estuarine sedimentary Cd stock is forecast to decrease slowly.  相似文献   

7.
Concentrations of thiol compounds, copper-complexing ligands, and total dissolved copper were followed over the course of 1 year (October 2002 until September 2003) in the Elizabeth River, Virginia to evaluate seasonality. Copper-complexing ligand concentrations were determined by competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE/ACSV). Thiol detection was carried out by high performance liquid chromatography (HPLC) and calibration using a suite of nine thiol compounds (cysteine, glutathione, mercaptoacetic acid, 2-mercaptoethanesulfonic acid, 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, and monothioglycerol). Total dissolved copper concentrations reached a January low of 13.1 nM to a June high of 24.7 nM and were found to vary seasonally with higher concentrations occurring from June to September. With a low of 26 nM during April to a high of 56 nM in October, copper-complexing ligand (average log KCuL of 12.0 ± 0.2) concentrations displayed a similar seasonal pattern to that of total dissolved copper. Free cupric ion concentrations remained below 1.5 pM for a majority of the year except during March, April, and December when values reached pM levels greater than 1.5. Six of the nine thiol compounds surveyed were detected in the Elizabeth River samples and ranged in concentration from below detectable concentrations (< 5 nM) to individual highs ranging from 25.3 to168.5 nM. The thiol compound concentrations displayed a clear seasonality fluctuating at below detection limits during November to February then increasing with increasing surface water temperatures from March to July. CLE/ACSV was used to assess whether or not the suite of thiol compounds detected by HPLC could contribute to the copper-complexing ligand pool. Conditional stability constants for each one of six thiol standards (average log KCuL  12.1 ± 0.5) were found to be statistically equivalent to the naturally occurring copper-complexing ligands (average log KCuL  12.0 ± 0.2). This suggests that these thiol compounds could act as copper-complexing ligands in natural samples and could contribute to the copper-complexing ligand pool detected by CLE/ACSV. This study involving seasonality of copper-complexing ligands and thiols in an industrialized, urban estuary underscored several points that have to be substantiated in future research efforts including copper-complexing ligands sources and the role that thiol compounds as well as other unidentified organic compounds play in the copper-complexing ligand pool.  相似文献   

8.
Geochemical estimates of N2 fixation in the North Atlantic often serve as a foundation for estimating global marine diazotrophy. Yet despite being well-studied, estimations of nitrogen fixation rates in this basin vary widely. Here we investigate the variability in published estimates of excess nitrogen accumulation rates in the main thermocline of the subtropical North Atlantic, testing the assumptions and choices made in the analyses. Employing one of these previously described methods, modified here with improved estimates of excess N spatial gradients and ventilation rates of the main thermocline, we determine a total excess N accumulation rate of 7.8 ± 1.7 × 1011 mol N yr− 1. Contributions to excess N development include atmospheric deposition of high N:P nutrients (adding excess N at a rate of 3.0 ± 0.9 × 1011 mol N yr− 1 for  38% of the total), high N:P dissolved organic matter advected into and mineralized in the main thermocline (adding excess N at 2.2 ± 1.1 × 1011 mol N yr− 1 for  28% of the total), and, calculated by mass balance of the excess N field, N2 fixation (adding excess N at 2.6 ± 2.2 × 1011 mol N yr− 1 for  33% of the total). Assuming an N:P of 40 and this rate of excess N accumulation due to the process, N2 fixation in the North Atlantic subtropical gyre is estimated at  4 × 1011 mol N yr− 1. This relatively low rate of N2 fixation suggests that i) the rate of N2 fixation in the North Atlantic is greatly overestimated in some previous analyses, ii) the main thermocline is not the primary repository of N fixed by diazotrophs, and/or iii) the N:P ratio of exported diazotrophic organic matter is much lower than generally assumed. It is this last possibility, and our uncertainty in the N:P ratios of exported material supporting excess N development, that greatly lessens our confidence in geochemical measures of N2 fixation.  相似文献   

9.
Axenic cultures of the microalgae species, Dunaliella tertiolecta and Phaeodactylum tricornutum were grown at arsenic (As) concentrations typically found in uncontaminated marine environments ( 2 µg L− 1) under different phosphorus concentrations. D. tertiolecta accumulated higher arsenic concentrations (mean: 13.7 ± 0.7 µg g− 1 dry mass) than P. tricornutum (mean: 1.9 ± 0.2 µg g−1 dry mass). Media phosphorus concentrations (0.6–3 mg/L) had little influence on microalgae growth rates or arsenic accumulation. Arsenic was present as lipid bound (29–38%; 4.2–9.5%), water-soluble (20–29%; 26–34%) and residue bound (41–45%; 57–69%) arsenic species in D. tertiolecta and P. tricornutum respectively. Hydrolysed lipids contained mostly glycerol arsenoribose (OH- ribose), dimethylarsinate (DMA) and inorganic arsenic (As(V)) moieties. Water-soluble species of microalgae were very different. D. tertiolecta contained inorganic arsenic (54–86%) with variable amounts of DMA (7.4–20%), arsenoriboses (5–25%) and traces of methylarsonate (MA) ( 1%). P. tricornutum contained mostly DMA (32–56%) and phosphate arsenoribose (PO4-ribose, 23–49%) and small amounts of OH-ribose (3.8–6.5%) and As(V) (9–16%). Both microalgae contained an unknown cationic arsenic species. The residue fractions of both microalgae contained predominately inorganic arsenic (99–100%). These results show that at natural seawater arsenic concentrations, both algae take up substantial amounts of inorganic arsenic that is complexed with structural elements or sequestered in vacuoles as stable complexes. A significant portion is also incorporated into lipids. Arsenic is metabolised to simple methylated species and arsenoriboses.  相似文献   

10.
The West Crocker Formation (Oligocene–Early Miocene), NW Borneo, consists of a large (>20 000 km2) submarine fan deposited as part of an accretionary complex. A range of gravity-flow deposits are observed, the most significant of which are mud-poor, massive sandstones interpreted as turbidites and clast-rich, muddy sandstones and sandy mudstones interpreted as debrites. An upward transition from turbidite to debrite is commonly observed, with the contact being either gradational and planar, or sharp and highly erosive. Based on their repeated vertical relationship and the nature of the contact between them, these intervals are interpreted as being deposited from one flow event which consisted of two distinct flow phases: fully turbulent turbidity current and weakly turbulent to laminar debris flow. The associated bed is called a co-genetic turbiditedebrite, with the upper debrite interval termed a linked debrite. Linked debrites are best developed in the non-channellised parts of the fan system, and are absent to poorly-developed in the proximal channel-levee and distal basin floor environments. Due to outcrop limitations, the genesis of linked debrites within the West Crocker Formation is unclear. Based on clast size and type, it seems likely that a weakly turbulent to laminar debris-flow flow phase was present when the flow event entered the basin. A change in flow behaviour may have led to deposition of a sand-rich unit with ‘turbidite’ characteristics, which was subsequently overlain by a mud-rich unit with ‘debrite’ characteristics. Flow transformation may have been enhanced by the disintegration and incorporation into the flow of muddy clasts derived from the upstream channel floor, channel mouth or from channel-levee collapse. Lack of preservation of this debrite in proximal areas may indicate either bypass of this flow phase or that the available outcrops fail to capture the debris flow entry point. Establishing robust sedimentological criteria from a variety of datasets may lead to the increasing recognition of co-genetic turbidite-debrite beds, and an increased appreciation of the importance of bipartite flows in the transport and deposition of sediments in deepwater environments.  相似文献   

11.
Faulting in Middle Jurassic reservoirs occurred at shallow depth during regional extension. Clean sandstones (<15% clay) deformed without significant grain fracturing and permeability reduction. Faults in impure sandstones (15–40% clay) experienced significant syn-deformation compaction and permeability reduction. Enhanced compaction during deeper burial reduced their permeabilities further from an average of 0.05 mD at <2.5 km to 0.001 mD at >4 km. Clay-rich sediments (>40% clay) deformed to produce clay smears with very low permeabilities (<0.001 mD). Faulting in the Rotliegendes occurred at greater depth during both basin extension and inversion. Extensional faulting produced cataclasites with permeability reductions of <10–>106; their permeabilities range from 0.2 to 0.0001 mD and are inversely related to their maximum burial depth. Faults formed or reactivated during inversion experienced permeability increase. These results can be extrapolated to other hydrocarbon reservoirs if differences in stress and temperature history are taken into account.The permeability of most (>80%) faults is not sufficiently low, compared to their wallrock, to retard single-phase fluid flow on a km-scale. Nevertheless, most faults could retard the flow of a non-wetting phase if present at low saturations. It may be necessary to incorporate the two-phase fluid flow properties of fault rocks into reservoir simulators using upscaling or pseudoisation techniques. Fault property data should be calibrated against production data before it can be used confidently.  相似文献   

12.
C37–C39 alkenones were measured in time-series sediment trap samples collected from August 1998 to June 2000 at two depths in the seasonal sea ice region of the western Sea of Okhotsk, off Sakhalin, in order to investigate alkenone production and water-column processes in the region. Measurable export fluxes of alkenones are ranged from < 0.1 to 5.8 μg/m2/day and clearly showed that the alkenone production was restricted to autumn. In 1998, maximum export flux of alkenones occurred in September when surface water column was well stratified with low nutrients in the surface mixing layer. In the next year, the maximum flux is observed in October. Comparison between alkenone temperature and satellite based sea surface temperature (SST) shows that the estimated alkenone temperatures in August 1998 were found to be  10 °C lower than the temporal satellite SST, suggesting that alkenones are produced in surface to subsurface thermocline layers during the period. Annual mean flux of alkenones is lower in the lower traps than that of the upper traps, suggesting rapid degradation of alkenones in water column, but the UK37′ value is not significantly altered. This study indicates that UK37′ values preserved in the surface sediments off Sakhalin reflect the seasonal temperature signal of near surface water, rather than annual mean surface temperature.  相似文献   

13.
Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton (α*), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (60°N), PAP (50°N) and ESTOC (30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α* – as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403–1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α* from 1 to 61 wavebands and study the results in conjunction with the three different α*estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α*. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α* is a function of wavelength and chlorophyll, and three wavebands if α* is a fixed value.  相似文献   

14.
The stable isotopes of dissolved organic carbon (DOC) are a powerful tool for distinguishing sources and inputs of organic matter in aquatic systems. While several methods exist to perform these analyses, no labs routinely utilize a high temperature combustion (HTC) instrument. Advantages of HTC instruments include rapid analysis, small sample volumes and minimal sample preparation, making them the favored devices for most routine oceanic DOC concentration measurements. We developed a stable carbon DOC method based around an HTC system. This method has the benefit of a simple setup, requiring neither vacuum nor high pressures. The main drawback of the method is a significant blank, requiring careful accounting of all blank sources for accurate isotopic and concentration values. We present here a series of experiments to determine the magnitude, source and isotopic composition of the HTC blank. Over time, the blank is very stable at  20 ng of carbon with a δ13C of − 18.1‰ vs. VPDB. The similarity of the isotopic composition of the blank and seawater samples makes corrections relatively minor. The precision of the method was determined by oxidizing organic standards with a wide isotopic and concentration range (− 9‰ to − 39‰; 18 μM to 124 μM). Analysis of seawater samples demonstrates the accuracy for low concentration, high salinity samples. The overall error on the measurement is approximately ± 0.8‰.  相似文献   

15.
We report measurements of dissolved iron (dFe, <0.4 μm) in seawater collected from the upper 300 m of the water column along the CLIVAR SR3 section south of Tasmania in March 1998 (between 42°S and 54°S) and November–December 2001 (between 47°S and 66°S). Results from both cruises indicate a general north-to-south decrease in mixed-layer dFe concentrations, from values as high as 0.76 nM in the Subtropical Front to uniformly low concentrations (<0.1 nM) between the Polar Front and the Antarctic continental shelf. Samples collected from the seasonal sea-ice zone in November–December 2001 provide no evidence of significant dFe inputs from the melting pack ice, which may explain the absence of pronounced ice-edge algal blooms in this sector of the Southern Ocean, as implied by satellite ocean-color images. Our data also allow us to infer changes in the dFe concentration of surface waters during the growing season. South of the Polar Front, a comparison of near-surface with subsurface (150 m depth) dFe concentrations in November–December 2001 suggests a net seasonal biological uptake of at least 0.14–0.18 nM dFe, of which 0.05–0.12 nM is depleted early in the growing season (before mid December). A comparison of our spring 2001 and fall 1998 data indicates a barely discernible seasonal depletion of dFe (0.03 nM) within the Polar Frontal Zone. Further north, most of our iron profiles do not exhibit near-surface depletions, and mixed-layer dFe concentrations are sometimes higher in samples from fall 1998 compared to spring 2001; here, the near-surface dFe distributions appear to be dominated by time-varying inputs of aerosol iron or advection of iron-rich subtropical waters from the north.  相似文献   

16.
Several flatfish species, including southern flounder (Paralichthys lethostigma) recruit to estuaries during early life. Therefore, evaluation of estuarine sites and habitats that serve as nurseries is critical to conservation and management. The present study used density data in conjunction with biochemical condition and growth measurements to evaluate settlement sites used by southern flounder in the Galveston Bay Estuary (GBE). In 2005, beam-trawl collections were made in three major sections of the GBE (East Bay, Galveston Bay, West Bay). Three sites were sampled in each bay. Within each sampling site, replicate collections were taken from three habitats: 1) marsh edge (< 1 m depth), 2) intermediate zone (10–20 m from marsh interface;  1 m depth), and 3) bay zone (typically > 100 m from marsh interface; depth > 1 m). Average size of southern flounder collected was 12–19 mm standard length, and peak densities occurred in January and February. Catch data indicated that densities of southern flounder were significantly greater in East Bay (2.75 per 100 m2) than in Galveston Bay (0.91 per 100 m2) or in West Bay (0.45 per 100 m2). Densities were statistically similar among habitats. Otolith-based estimates of age indicated that the majority of southern flounder collected were 35–45 days old and derived from early December to early January hatch-dates. Growth rates were similar among bays and among habitats, with the average growth rate being 0.40 mm day− 1 (range: 0.21–0.76 mm day− 1). RNA:DNA was above the established baseline value for nutritional stress, indicating that newly settled southern flounder in the GBE were in relatively high condition. Habitat-specific differences in RNA:DNA ratios were not observed; however, ratios were significantly lower in West Bay (average 8.0) than in East Bay (average 9.5) or in Galveston Bay (average 9.8), suggesting the condition of new recruits may vary spatially within the GBE. Findings from the current study suggest density and condition of newly settled southern flounder vary at the bay scale, suggesting that parts of GBE do not function equally as nurseries.  相似文献   

17.
18.
Delayed coincidence counters (RaDeCC), used for measuring 223Ra and 224Ra preconcentrated from water onto MnO2-impregnated acrylic fiber (“Mn-fiber”), require a standard Mn-fiber column that has a precisely known activity of 224Ra for calibration. This may be done by adding an aged 228Th standard solution to adsorb both 228Th and its daughter 224Ra quantitatively onto a Mn fiber. We used both seawater and deionized water (DIW) for testing the adsorption efficiency of Th and Ra onto Mn fibers. Our experimental results show that more than 50% of thorium (232Th and 228Th) breaks through the Mn-fiber column when DIW is used as a medium. However, near quantitative recoveries are obtained if filtered (0.45 μm) seawater is used to prepare the standard. In the case of pure DIW, the pH (initial pH  5.3) rises to > 10 after passing through the column while seawater (initial pH  7.8) changes to  7.2. Thus, the lack of thorium adsorption in DIW may be attributed to this huge increase of pH and the consequent formation of Th(OH)4 and polyhydroxyl colloids. Based on these observations, we recommend that one should use either artificial seawater or natural seawater (which has negligible 224Ra and 228Th) as a loading solution after 0.45 μm filtration. In addition, the thorium adsorption efficiency should be confirmed either by thorium analysis of the effluent solution or long-term monitoring of the supported 224Ra on the Mn fiber using the RaDeCC. Similar cautions are likely necessary for making 223Ra standards by adsorption of 227Ac onto Mn fibers.  相似文献   

19.
Particulate matter in aquatic systems is an important vehicle for the transport of particulate organic carbon (POC). Its accurate measurement is of central importance for the understanding of marine carbon cycling. Previous work has shown that GF/F-filter-based bottle-sample-derived concentration estimates of POC are generally close to or higher than large-volume in-situ-pump-derived values (and in some rare cases in subzero waters are up to two orders of magnitude higher). To further investigate this phenomenon, water samples from the surface and mid-water Northeast Atlantic and the Baltic Sea were analyzed. Our data support a bias of POC concentration estimates caused by adsorption of nitrogen-rich dissolved organic material onto GF/F filters. For surface-ocean samples the mass per unit area of exposed filter and composition of adsorbed material depended on the filtered volume. Amounts of adsorbed OC were enhanced in the surface ocean (typically 0.5 μmol cm− 2 of exposed filter) as compared to the deep ocean (typically 0.2 μmol cm− 2 of exposed filter). These dependencies should be taken into account for future POC methodologies. Bottle/pump differences of samples that were not corrected for adsorption were higher in the deep ocean than in the surface ocean. This discrepancy increased in summer. It is shown that POC concentration estimates that were not corrected for adsorption depend not only on the filtered volume, true POC concentration and mass of adsorbed OC, but also on the filter area. However, in all cases we studied, correction for adsorption was important, but not sufficient, to explain bottle/pump differences. Artificial formation of filterable particles and/or processes leading to filterable material being lost from and/or missed by sample-processing procedures must be considered. It can be deduced that the maximum amounts of POC and particulate organic nitrogen (PON) that can be artificially formed per liter of filtered ocean water are  3–4 μM OC (5–10% of dissolved OC) and  0.2–0.5 μM ON (2–10% of dissolved ON), respectively. The relative sensitivities of bottle and pump procedures, and of surface- and deep-ocean material, to artificial particle formation and the missing/losing of material are evaluated. As present procedures do not exist to correct for all possible biasing effects due to artificial particle formation and/or miss/loss of filterable material, uncertainties of filtration-based estimates of POC concentrations need further testing. The challenge now is to further constrain the magnitude of the biasing effects that add to the adsorption effect to reduce the uncertainties of estimates of POC concentrations, inventories and fluxes in the ocean.  相似文献   

20.
Measurements of bromoform (CHBr3), diiodomethane (CH2I2), chloroiodomethane (CH2ICl) and bromoiodomethane (CH2IBr) were made in the water column (5–100 m depth) of the Southern Ocean within 0–40 km of the Antarctic sea ice during the ANTXX1/2 transect of the German R/V Polarstern, at five locations between 70–72°S and 9–11°W in the Antarctic spring/summer of 2003–2004. Some of the profiles exhibited a very pronounced layer of surface sea-ice meltwater, as evidenced by salinity minima and temperature maxima, along with surface maxima in concentrations of CHBr3, CH2I2, CH2ICl and CH2IBr. These results are consistent with in situ surface halocarbon production by ice algae liberated from the sea ice, although production within the sea ice followed by transport cannot be entirely ruled out. Additional sub-surface maxima in halocarbons occurred between 20 and 80 m. At a station further from shore and not affected by surface sea-ice meltwater, surface concentrations of CH2I2 were decreased whereas CH2ICl concentrations were increased compared to the stations influenced by meltwater, consistent with photochemical conversion of CH2I2 to CH2ICl, perhaps during upward mixing from a layer at  70 m enhanced in iodocarbons. Mean surface (5–10 m) water concentrations of halocarbons in these coastal Antarctic waters were 57 pmol l− 1 CHBr3 (range 44–78 pmol l− 1), 4.2 pmol l− 1 CH2I2 (range 1.7–8.2 pmol l− 1), 0.8 pmol l− 1 CH2IBr (range 0.2–1.4 pmol l− 1), and 0.7 pmol l− 1 CH2ICl (range 0.2–2.4 pmol l− 1). Concurrent measurements in air suggested a sea-air flux of bromoform near the Antarctic coast of between 1 and 100 (mean 32.3, median 10.4) nmol m− 2 day− 1 and saturation anomalies of 557–1082% (mean 783%, median 733%), similar in magnitude to global shelf values. In surface samples affected by meltwater, CH2I2 fluxes ranged from 0.02 to 6.1 nmol m− 2 day− 1, with mean and median values of 1.9 and 1.1 nmol m− 2 day− 1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号