首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved organic carbon (DOC), stable carbon isotopic (δ13C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. δ13C values of both POC (−23.8‰ to −26.8‰) and DOC (−25.0‰ to −29.0‰) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in δ13C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-δ13C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-δ13C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10–30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted.  相似文献   

2.
Chromophoric dissolved organic matter (CDOM), as the light absorbing fraction of bulk dissolved organic matter (DOM), plays a number of important roles in the global and local biogeochemical cycling of dissolved organic carbon (DOC) and in controlling the optical properties of estuarine and coastal waters. Intertidal areas such as salt marshes can contribute significant amounts of the CDOM that is exported to the ocean, but the processes controlling this CDOM source are not well understood. In this study, we investigate the production of DOM and CDOM from the decomposition of two salt marsh cordgrasses, Spartina patens, a C4 grass, and Typha latifolia, a C3 grass, in well-controlled laboratory experiments. During the seven-week incubation period of the salt marsh grasses in oxic and anoxic seawater, changes in dissolved organic carbon (DOC) concentrations, dissolved nitrogen (DN) concentrations, stable carbon isotopic composition of DOC (DOC-δ13C), and CDOM fluorescence demonstrate a significant contribution of DOC and CDOM to estuarine waters from salt marsh plants, such as Spartina and Typha species. In the natural environment, however, the release processes of CDOM from different cordgrass species could be controlled largely by the in situ oxic and anoxic conditions present during degradation which affects both the production and decomposition of DOC and CDOM, as well as the optical properties of CDOM in estuarine and coastal waters.  相似文献   

3.
In this study, we examine the distribution and carbon stable isotope signature of dissolved organic carbon (DOC) and humic substances (HS) along a salinity gradient in the Altamaha and Satilla River estuaries. The maximum DOC concentrations in the Altamaha and Satilla were 10 and 29 mg C l−1, respectively, though concentrations were similar at the mouth of both estuaries. There was a decrease in HS content of DOC from 50 to 80% at the head of the estuaries to 10% at salinities higher than 30‰. The δ13C DOC varied between −25.5 and −19‰ and between −27 and −21‰ in the Altamaha and Satilla estuaries, respectively. The tendency towards more depleted δ13C DOC in the Satilla, especially in the lower salinity portion of this estuary, suggests greater terrestrial inputs in the Satilla than in the Altamaha. Seasonal fluctuations were observed in the form of increased (two to three times) range in DOC concentration, heavier δ13C DOC and increased proportion of estuarine–marine-derived DOC (average enrichment of δ13C DOC from +1 to +2) during low river flow (July–October). The δ13C HS in both rivers showed a similar trend, but was consistently more depleted than DOC, with an average range from −28 to −24.5‰. This suggests that HS have larger proportions of terrestrial components (a maximum of >60% at the mouth of the estuary) than DOC. The less depleted δ13C values of DOC in comparison with HS indicate a different source for the non-humic (non-HS) component of DOC (range in δ13C non-HS, −22 to −16‰). That source could either be the decomposition of detrital material derived from saltmarsh environments or microalgal-derived DOC of estuarine or marine origins.  相似文献   

4.
This study examined the relationship between carbon isotopic composition of sinking organic matter (OM) and the biological, physical and chemical properties of the surface ocean in the Cariaco Basin. The 13C/12C ratio of OM (δ13Corg) in sinking particles was determined on sediment trap samples from four depths collected from 1996 to 1999 as part of the CArbon Retention In A Colored Ocean time series. Water column properties, including temperature, productivity, chlorophyll and concentration of dissolved CO2, were concurrently measured on monthly cruises. The δ13Corg varied from a high of –17.7‰ to a low of –22.6‰ during the study period. The variation of the δ13Corg throughout seasonal cycles was directly proportional to the strength of upwelling and was negatively correlated with temperature (r2=0.64). During the 1996–1997 upwelling event, the strongest during the study period, the δ13Corg increased by 4.4‰ whereas during the 1998–1999 upwelling event, the weakest during the study period, the δ13Corg only increased by 3.3‰. Contrary to most previous studies, we observed a negative relationship (r2=0.53) between [CO2 aq] and the estimated isotopic fractionation factor (εp). However, there was no correlation between εp and the calculated growth rates indicating that there was non-diffusive uptake of carbon into phytoplankton cells. It thus appears that [CO2 aq] does not control the δ13Corg in the water column of the study site. The best explanation for the isotopic enrichment observed is a carbon concentrating mechanism (CCM) in phytoplankton. The existence of a CCM in phytoplankton has major implications for the interpretation of the δ13Corg in the Cariaco Basin.  相似文献   

5.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

6.
The stable carbon isotopic composition of particulate organic matter in the ocean, δ13CPOC, shows characteristic spatial variations with high values in low latitudes and low values in high latitudes. The lowest δ13CPOC values (−32‰ to −35‰) have been reported in the Southern Ocean, whereas in arctic and subarctic regions δ13CPOC values do not drop below −27‰. This interhemispheric asymmetry is still unexplained. Global gradients in δ13CPOC are much greater than in δ13CDIC, suggesting that variations in isotopic fractionation during organic matter production are primarily responsible for the observed range in δ13CPOC. Understanding the factors that control isotope variability is a prerequisite when applying δ13CPOC to the study of marine carbon biogeochemistry. The present model study attempts to reproduce the δ13CPOC distribution pattern in the ocean. The three-dimensional (3D) Hamburg Model of the Oceanic Carbon Cycle version 3.1 (HAMOCC3.1) was combined with two different parametrizations of the biological fractionation of stable carbon isotopes. In the first parametrization, it is assumed that the isotopic fractionation between CO2 in seawater and the organic material produced by algae, P, is a function of the ambient CO2 concentration. The two parameters of this function are derived from observations and are not based on an assumption of any specific mechanism. Thus, this parametrization is purely empirical. The second parametrization is based on fractionation models for microalgae. It is supported by several laboratory experiments. Here the fractionation, P, depends on the CO2 concentration in seawater and on the (instantaneous) growth rates, μi, of the phytoplankton. In the Atlantic Ocean, where most field data are available, both parametrizations reproduce the latitudinal variability of the mean δ13CPOC distribution. The interhemispheric asymmetry of δ13CPOC can mostly be attributed to the interhemispheric asymmetry of CO2 concentration in the water. However, the strong seasonal variations of δ13CPOC as reported by several authors, can only be explained by a growth rate-dependent fractionation, which reflects variations in the cellular carbon demand.  相似文献   

7.
In order to evaluate the respiration–photosynthesis dynamics in two contrasting North Sea estuaries, pH, temperature, alkalinity, chlorophyll-a (chl-a), and isotopic ratios of dissolved inorganic carbon (δ13CDIC) and dissolved oxygen (δ18ODO) were measured in the Tyne (July 2003) and Tweed (July 2003 and December 2003) estuaries. Using a concentration-dependent isotope mixing line, δ13CDIC values in the Tweed (July 2003) demonstrated mostly conservative behaviour across the estuary, reflecting mixing between riverine and marine sources, although some samples were slightly more 13C-enriched than predicted δ13CDIC values. Low pCO2 (less than 2 times atmospheric pressure) and 18O-depleted δ18ODO signatures below equilibrium with the atmosphere provided further evidence for net autotrophy in the Tweed estuary in summer 2003. Conversely, in the Tyne during the summer and in the Tweed during the winter higher pCO2 (up to 6.5 and 14.4 times atmospheric partial pressure in the Tweed and Tyne, respectively), slightly 13C-depleted δ13CDIC and 18O-enriched δ18ODO values indicated heterotrophy as the dominant process. The relatively large releases of CO2 observed during these two estuarine surveys can be attributed to significant oxidation of terrigenous organic matter (OM). This study therefore demonstrates the usefulness of combined δ18ODO and δ13CDIC isotopes in examining the relationship between respiration–photosynthesis dynamics and the fate of terrestrially derived OM during estuarine mixing.  相似文献   

8.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

9.
Data from piston cores collected from Carolina Rise and Blake Ridge, and from many DSDP/ODP sites indicate that extreme 13C-depletion of methane and ΣCO2 occurs within the uppermost methanogenic zone of continental rise sediments. We infer that 13C-depleted methane is generated near the top of the methanogenic zone when carbon of 13C-depleted ΣCO2, produced by microbially-mediated anaerobic methane oxidation, is recycled back to methane through CO2 reduction. Interstitial water and gas samples were collected in 27 piston cores, 16 of which penetrated through the sulfate reduction zone into methane-bearing sediments of the Carolina Rise and Blake Ridge. Isotopic measurements (δ13CCH4, δ13CCO2, δDCH4, and δDH2O) indicate that this methane is microbial in origin, produced by microbially-mediated CO2 reduction. Methane samples form two distinct isotopic pools. (1) Methane from a seafloor seep site shows a mean δ13CCH4 value of − 69 ± 2%., mirroring values found at ≥ 160 mbsf from a nearby DSDP site. (2) Twenty, areally-separated sites (sample depth, 10 to 25 mbsf) have δ13CCH4 values ranging from −85 to −103%., and δ13CCO2 as negative as −48%.. The very low δ13C values from the methane and CO2 pools highlight the importance of carbon cycling within continental rise sediments at and near the sulfate-methane boundary.  相似文献   

10.
Tangential-flow ultrafiltration was used to isolate particulate and high-molecular-weight dissolved material from seawater collected at various depths and geographic regions of the Pacific and Atlantic Oceans. Ultrafiltration proved to be a relatively fast and efficient method for the isolation of hundreds of milligrams of material. Optical and electron microscopy of the isolated materials revealed that relatively fragile materials were recovered intact. Depth-weighted results of the size distribution of organic matter in seawater indicated that ˜ 75% of marine organic carbon was low-molecular-weight (LMW) dissolved organic carbon (< 1 nm), ˜ 24% was high-molecular-weight (HMW) dissolved organic carbon (1–100 nm), and ˜ 1% was particulate organic carbon (> 100 nm). The distribution of carbon in surface water was shifted to greater relative abundances of larger size fractions, suggesting a diagenetic sequence from macromolecular material to small refractory molecules. The average C:N ratios of particulate organic matter (POM) and HMW dissolved organic matter (DOM) were 7.7 and 16.7, respectively. Differences in C:N ratios between POM and HMW DOM were large and invariant with depth and geographic region, indicating that the aggregation of HMW DOM to form POM must be of minor significance to overall carbon dynamics. The stable carbon isotope composition (δ13C) of POM averaged −22.7%. in surface water and −25.2%. in subsurface water. Several possible explanations for the observed isotopic shift with depth were explored, but we were unable to discern the cause. The δ13C of HMW DOM samples was relatively constant and averaged −21.7%., indicating a predominantly marine origin for this material. The δ15N values of POM were highly variable (5.8–15.4%.), and the availability of nitrate in surface waters appeared to be the major factor influencing δ15N values in the equatorial Pacific. In the upwelling region nitrate concentrations were relatively high and δ15N values of POM were low, whereas to the north and south of the upwelling nitrate concentrations were low and δ15N values were high. The δ15N values of HMW DOM reflected the same trends observed in the POM fraction and provided the first such evidence for biological cycling of dissolved organic nitrogen (DON). Using the observed δ15N values and an estimate of meridional advection velocity, we estimated a turnover time of 0.3 to 0.5% day−1 for HMW DON. These results suggest a major role for DON in the upper ocean nitrogen cycle.  相似文献   

11.
We used stable C and N isotope ratios of tissues from 29 fish species from a large subtropical lagoon in southern Brazil to examine spatial variability in isotopic composition and vertical trophic structure across freshwater and estuarine habitats. Nitrogen isotope ratios indicated a smooth gradation in trophic positions among species, with most fishes occupying the secondary and tertiary consumer level. Fish assemblages showed a significant shift in their carbon isotopic signatures between freshwater and estuarine sites. Depleted carbon signatures (from −24.7‰ to −17.8‰) were found in freshwater, whereas more enriched signatures (from −19.1‰ to −12.3‰) were obtained within the estuarine zone downstream. Based on our survey of the C3 and C4 plants and isotopic values for phytoplankton and benthic microalgae reported for ecosystems elsewhere, we hypothesized that the observed δ13C differences in the fish assemblage between freshwater and estuarine sites is due to a shift from assimilating organic matter ultimately derived from C3 freshwater marsh vegetation and phytoplankton at the freshwater site (δ13C ranging from −25‰ to −19‰), to C4 salt-marsh (e.g. Spartina) and widgeon grass (Ruppia maritima), benthic microalgae and marine phytoplankton at the estuarine sites (from −18‰ to −12‰). Our results suggested that fish assemblages are generally supported by autochthonous primary production. Freshwater fishes that likely were displaced downstream into the estuary during periods of high freshwater discharge had depleted δ13C values that were characteristic of the upper lagoon. These results suggest that spatial foodweb subsidies can occur within the lagoon.  相似文献   

12.
Surface sediment samples from a matrix of fifty-five sites covering virtually the entire Bohai Sea (Bohai), China were analyzed for total organic carbon (TOC), total nitrogen (TN), n-alkanes, unresolved complex mixture (UCM), biomarkers and stable carbon isotopic composition (δ13C), and principal component analysis was performed for source identification of organic matter (OM). The distribution of organic carbon correlated well with sediment grain size with the finest sediments having the highest concentration, suggesting the influence of hydrodynamics on the accumulation of sedimentary organic matter (SOM). The corrected TOC/ON (organic nitrogen) ratios and δ13C indicated mixed marine and terrestrial sources of SOM. Results suggested that δ13C could be used as a potential indicator to observe the dispersion of Huanghe-derived sediments in Bohai. Total n-alkane concentrations varied over 10-fold from 0.39 to 4.94 μg g− 1 (dry weight) with the maximum terrigenous/aquatic alkane ratio observed at the Huanghe River Estuary (HRE) due to more higher plant OM from riverine inputs. C12–C22 n-alkanes with even-to-odd predominance were observed in several central-eastern Bohai sites. The HRE and its adjacent area is the main sink for the Huanghe river-derived OC. The ubiquitous presence of UCM, biomarkers (hopanes and steranes) and PCA results indicated the presence of petroleum contamination in Bohai, mainly from offshore oil exploration, discharge of pollutants from rivers, shipping activities and atmospheric deposition.  相似文献   

13.
Live-collected shells of the oyster, Crassostrea virginica, contain geochemical records of modern temperature and salinity, so records of prehistoric conditions may be obtained from subfossil shells. Restoration of channelized watersheds in Florida is receiving much attention, and plans for targeted watersheds require information about estuarine conditions before channelization. Lack of historical records necessitates alternative methods to understand pre-disturbance conditions. A 14C-calibrated, amino-acid geochronology based on racemization of glutamic acid yielded ages ranging from 190–1220 AD and from 1270–1860 AD for subfossil oysters from Blackwater River (near-natural watershed) and for Faka-Union Bay (channelized watershed), respectively. δ18O and δ13C values of subfossil shells from Blackwater River indicate salinity and summer temperatures similar to present. Winter temperatures recorded in shells from 190, 590, 720, and 1050 AD appear 1–5 °C colder than present winter temperatures, whereas the shell from 1220 AD records winter temperatures similar to modern winter temperatures. These temperature shifts may indicate change in climate or natural seasonal variation of winter temperature from year to year. Subfossils from Faka-Union Bay may reflect a complicated hydrology, which cannot be evaluated by isotopic compositions alone and demonstrates the need for development of independent elemental proxies for temperature and salinity. Decreases in δ13C from subfossil to modern shells may in part result from CO2 added to the atmosphere from fossil fuel burning (the Suess effect). Subfossil δ13C that is >1‰ more positive than modern shells suggest a change in the dominant carbon sources from terrestrial C4 or aquatic plants to C3 plants (mangroves).  相似文献   

14.
The reaction pathways of nitrogen and carbon in the Framvaren Fjord (Norway) were studied through stable isotope analysis (δ15N and δ13C) of dissolved inorganic and particulate organic matter (POM). The variations in the isotopic compositions of the various C and N pools within the water column were use to evaluate the historical deposition of material to the sediments. The high δ15N-NH4+ at the O2/H2S interface, as a consequence of microbial uptake between 19 and 25 m, results in extremely depleted δ15N-particulate nitrogen (PN) of approximately 1‰ within the particulate maximum at approximately 19 m. The carbon isotopic distribution of dissolved inorganic carbon (DIC) and particulate organic carbon (POC) within the interface suggests that the distinct microbial flora (Chromatium sp. and Chlorobium sp.) fractionate inorganic carbon to different degrees. The extremely light δ13C-POC within the interface (−31‰) appears to be a result of carbon uptake by Chromatium sp. while δ13C-POC of −12‰ is more indicative of Chlorobium sp. Nitrogen isotopic mass balance calculations suggested that approximately 75% of the material sinking to the sediments was derived from the dense particulate maximum between 19 and 25 m. The sediment distribution of nitrogen isotopes varied from 2‰ at the surface to approximately 6‰ at 30 cm. The nitrogen isotopic variations with depth may be an indicator of the depth or position of the O2/H2S interface in the fjord. Low sediment δ15N indicated that the interface was within the photic zone of the water column, while more enriched values suggested that the interface was lower in the water column potentially allowing for less fractionation during biological incorporation of dissolved inorganic nitrogen. Results indicate that the dense layers of photo-autotrophic bacteria in the upper water column impart unique carbon and nitrogen isotopic signals that help follow processes within the water column and deposition to the sediments.  相似文献   

15.
The stable carbon isotope composition of particulate organic carbon (POC) from plankton, sediment trap material and surface sediments from the Atlantic sector of the Southern Ocean were determined. Despite low and constant water temperatures, large variations in the δ13C values of plankton were measured. 13C enrichments of up to 10‰ coincided with a change in the diatom assemblage and a two-fold increase in primary production. Increased CO2 consumption as a result of rapid carbon fixation may result in diffusion limitation reducing the magnitude of the isotope fractionation. The δ13C values of plankton from sea-ice cores display a relationship with the chlorophyll a content. High ‘ice-algae’ biomass, in combination with a limited exchange with the surrounding seawater, results in values of about − 18 to − 20‰. It is assumed that these values are related to a reduced CO2 availability in the sea-ice system. In comparison with plankton, sinking krill faeces sampled by traps can be enriched by 2–5‰ in 13C (e.g. central Bransfield Strait). In contrast, the transport of particles in other faeces, diatom aggregates or chains results in minor isotope changes (e.g. Drake Passage, Powell Basin, NW Weddell Sea). A comparison between the δ13C values of sinking matter and those of surface sediments reveals that 13C enrichments of up to 3–4‰ may occur at the sediment-water boundary layer. These isotopic changes are attributed to high benthic respiration rates.  相似文献   

16.
The nearshore shelf of the Beaufort Sea is defined by extreme physical and biological gradients that have a distinctive influence on its productivity and trophic structure. Massive freshwater discharge from the Mackenzie River, along with numerous smaller rivers and streams elsewhere along the coast, produce an environment that is decidedly estuarine in character, especially in late spring and summer. Consequently, the Beaufort coast provides a critical habitat for several species of amphidromous fishes, some of which are essential to the subsistence lifestyle of arctic native populations. Because of its low in situ productivity, allochthonous inputs of organic carbon, identifiable on the basis of isotopic composition, are important to the functioning of this arctic estuarine system. Coastal erosion and river discharge are largely responsible for introducing high concentrations of suspended sediment from upland regions into the nearshore zone. The depletion in the 13C content of invertebrate and vertebrate consumers, which drops about 4–5‰ eastward along the eastern Alaskan Beaufort Sea coast, may reflect the assimilation of this terrestrial organic matter into local food webs. In addition, the large range in 13C values of fauna collected in the eastern Beaufort (nearly 8‰) compared to the same species in the northeastern Chukchi (3‰), indicate a lower efficiency of carbon transfer between trophic levels in the eastern Beaufort. The wider spread in stable isotope values in the eastern Beaufort may also reflect a decoupling between benthic and pelagic components. Isotopic tracer studies of amphidromous fishes in the Simpson Island barrier island lagoon revealed that terrestrial (peat) carbon may contribute as much as 30–50% of their total dietary requirements. On the eastern Alaska Beaufort Sea coast, the δ13C values of arctic cod collected in semi-enclosed lagoons were more depleted, by 3–4‰, compared to fish collected in the coastal Beaufort Sea. Calculations from isotopic mixing equations indicate cod from lagoons may derive 70% of their carbon from terrestrial sources. The δ15N values of lagoon fish were also 4‰ lower than coastal specimens, reflective of the lower δ15N values of terrestrially derived nitrogen (0–1.5‰ compared to 5–7‰ for phytoplankton). The role of terrestrial carbon in arctic estuarine food webs is especially important in view of the current warming trend in the arctic environment and the role of advective processes that transport carbon along the nearshore shelf. Biogeochemical studies of the arctic coastal estuarine environment may provide more insights into the function of these biologically complex ecosystems.  相似文献   

17.
We describe an investigation into the reactivity of dissolved organic carbon (DOC), produced from marine algae, to conventional persulphate and ultraviolet (UV) oxidation methods. Marine algae were grown in batch culture in the presence of 14C bicarbonate and filtered samples of the phytoplankton dissolved organic carbon (PDOC) were oxidized with persulphate and UV techniques. The amount of fixed label found in solution after the oxidation procedures was compared with the initial amount of labelled DOC. Marine algae examined in this way included: the diatoms, Chaetoceros gracilis, Skeletonema costatum, Phaeodactylum tricornutum; the flagellate, Isochrysis galbana; and the cyanobacterium, Synechococcus strain DC2. It was found that 5–18% of the DOC produced by these phytoplankton resisted persulphate oxidation. Samples were also measured for their resistance to UV oxidation by an autoanalyzer method. It was found that 15–27% of these samples resisted UV oxidation. However, 95% of PDOC was oxidized after exposure for 6 h to high intensity UV irradiation using a variable exposure time system. P. tricornutum and Synechococcus PDOC samples were ultrafiltered into low molecular weight (< 10 000 Da) and colloidal (> 10 000 Da) size fractions. Both species produced mainly (> 68%) low molecular weight material. Slightly greater resistance to persulphate oxidation was generally found for the colloidal Synechococcus PDOC (15–22%) than for the low molecular weight material (14–17%). However, the opposite was found for the P. tricornutum PDOC which generally showed less resistance for the colloidal fraction (5–12%) than for the low molecular weight fraction (10–15%).Experiments were also conducted to determine the effects of short-term (days) and long-term (months) ageing of PDOC solutions in the presence of microbial populations from coastal seawater. Long-term ageing decreased the amount of PDOC that resisted oxidation in all cases. However, the fraction of PDOC resisting persulphate oxidation increased by small amounts over a short-term experiment. Increased resistance was attributed to preferential degradation of biologically and chemically labile components of PDOC by bacteria.The percentages of phytoplankton-produced (and microbially aged) DOC found in this study to resist UV or persulphate oxidation were low (5–27%), compared with those values (50–65%) reported for DOC in surface seawater on the basis of recent high temperature catalytic oxidation analyses.  相似文献   

18.
Sinking particles were analyzed for their nitrogen isotopic ratio δ15N) of total particulate nitrogen (PN), stable carbon isotopic ratio (δ13C) and radioactive isotopic ratio (δ14C) of total particulate organic carbon (POC), at three different latitudinal (temperate, subpolar and equatorial) and geomorphological (trench, proximal abyssal plain and distal abyssal plain) sites in the western North Pacific Ocean using year-long time series sediment trap systems, to clarify the common vertical trends of the isotopic signals in deep water columns. Although the δ15N and δ13C values of sinking particulate organic matter (POM) were partly affected by the resuspension of sedimentary POM from the sea floor, especially in the trench, the changes in δ15N and δ13C values owing to the resuspension could be corrected by calculation of the isotopic mass balance from δ14C of sinking POC. After this correction, common downward decreasing trends in δ15N and δ13C values were obtained in the deep water columns, irrespective of the latitudes and depths. These coincidental isotopic signals between δ15N and δ13C values provide new constraints for the decomposition process of sinking POM, such as the preferential degradation of 15N- and 13C-rich compounds and the successive re-formation of the sinking particles by higher trophic level organisms in the deep water column.  相似文献   

19.
Stable nitrogen isotopic ratios were measured in sinking particles and surface sediments from the South China Sea (SCS) in order to study recent nitrogen sources and degradation. Average δ15N values of 16 sediment traps deployed at seven locations in the northern, central and southern SCS were uniformly low, ranging between 2.7 and 4.5‰ with a winter minimum in the northern and central SCS. Enhanced nitrogen contents and δ15N values were noted in samples affected by swimmers, comprising between 5 and 20% of total nitrogen fluxes. Nitrate sources were subsurface waters from the western Pacific, which were isotopically depleted due to the remineralization of nitrogen from nitrogen fixation in surface waters. Nitrogen fixation in the SCS contributed up to 20% to the settling particles. In the southern SCS, resuspended matter close to the shelf added to the sinking particulates. The long-term trap record from the central SCS revealed decreasing δ15N values during the 1990s, which correspond with findings from the North Pacific Subtropical Gyre and may be attributable to increased nitrogen fixation due to global warming-related stratification. This trend may be restricted to the 1990s but could also persist due to the projection of more frequent occurrence of El Niño conditions.The δ15N increase from swimmer-free trap averages of 2.7–3.6‰ to values of 5–6‰ in underlying deep-sea sediments was in the same range as in other deep ocean areas. Similar to results from the northern Indian Ocean, this increase could be related to isotopic enrichment during amino acid degradation. The lowest sedimentary δ15N values characterize the Pinatubo ash layer deposited off Luzon in an event of mass sedimentation in 1991. The fast deposition of organic matter drawn from the surface waters with the ash in the form of vertical density currents evidently preserved the planktonic δ15N signal.  相似文献   

20.
Within the framework of the European project EROS 21, a biogeochemical study of particles transported from the Danube Delta to the Northwestern Black Sea whose carbon cycle is dominated by riverine inputs was carried out in spring off the Sulina branch of the Danube Delta. The distribution of particulate organic carbon (POC), chlorophyll a (Chl a), C/N, and δ13C evidenced an omnipresent contribution of terrestrial organic matter throughout the study area together with a dilution of these inputs by freshwater and marine organisms. Four lipid series, n-alkanoic acids, n-alkanes, n-alkanols, and sterols were analyzed by gas chromatography and gas chromatography/mass spectrometry. Several signature compounds were selected to delineate dispersion of terrestrial organic carbon: (1) long-chain n-alkanoic acids in the range C24–C34, long-chain n-alkanes in the range C25–C35, long-chain n-alkanols in the range C22–C30, 24-ethylcholesta-5,22-dien-3β-ol (29Δ5,22) and 24-ethylcholesterol (29Δ5) for vascular plant-derived material and (2) coprostanol (27Δ0,5β) for faecal contamination associated with sewage effluents. A marked decrease was observed between the concentrations of different vascular plant markers characterizing the two end members: riverine at salinity 0.3 and marine at salinity 15.5. The decrease observed for marine/riverine end members (expressed as a function of organic carbon) varied in a large range, from 4% for n-alkanes to 18.6%, 20.4% and 24% for n-fatty acids, n-alkanols and sterols, respectively. These values reflect a combination of various processes: size-selective particle sedimentation, resuspension of different particle pools of different sizes and ages, and/or selective biological utilization. The multi-marker approach also suggested the liberation in the mixing zone of terrestrial moieties, tightly trapped in macromolecular structures of the riverine material. The greatest decrease for marine/riverine end members was observed for coprostanol (0.9%), underlining the efficiency of the mixing zone as a sink for sewage-derived carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号