首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a State/Federal partnership created to reduce tsunami hazards along U.S. coastlines. Established in 1996, NTHMP coordinates the efforts of five Pacific States: Alaska, California, Hawaii, Oregon, and Washington with the three Federal agencies responsible for tsunami hazard mitigation: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey (USGS). In the 7 years of the program it has, 1. established a tsunami forecasting capability for the two tsunami warning centers through the combined use of deep ocean tsunami data and numerical models; 2. upgraded the seismic network enabling the tsunami warning centers to locate and size earthquakes faster and more accurately; 3. produced 22 tsunami inundation maps covering 113 coastal communities with a population at risk of over a million people; 4. initiated a program to develop tsunami-resilient communities through awareness, education, warning dissemination, mitigation incentives, coastal planning, and construction guidelines; 5. conducted surveys that indicate a positive impact of the programs activities in raising tsunami awareness. A 17-member Steering Group consisting of representatives from the five Pacific States, NOAA, FEMA, USGS, and the National Science Foundation (NSF) guides NTHMP. The success of the program has been the result of a personal commitment by steering group members that has leveraged the total Federal funding by contributions from the States and Federal Agencies at a ratio of over six matching dollars to every NTHMP dollar. Twice yearly meetings of the steering group promote communication between scientists and emergency managers, and among the State and Federal agencies. From its initiation NTHMP has been based on the needs of coastal communities and emergency managers and has been results driven because of the cycle of year-to-year funding for the first 5 years. A major impact of the program occurred on 17 November 2003, when an Alaskan tsunami warning was canceled because real-time, deep ocean tsunami data indicated the tsunami would be non-damaging. Canceling this warning averted an evacuation in Hawaii, avoiding a loss in productivity valued at $68M.  相似文献   

2.
The first 7 years of the National Tsunami Hazard Mitigation Program (NTHMP) have had a significant positive impact on operations of the Richard H. Hagemeyer Pacific Tsunami Warning Center (PTWC). As a result of its seismic project, the amount and quality of real-time seismic data flowing into PTWC has increased dramatically, enabling more rapid, accurate, and detailed analyses of seismic events with tsunamigenic potential. Its tsunameter project is now providing real-time tsunameter data from seven strategic locations in the deep ocean to more accurately measure tsunami waves as they propagate from likely source regions toward shorelines at risk. These data have already been used operationally to help evaluate potential tsunami threats. A new type of tsunami run-up gauge has been deployed in Hawaii to more rapidly assess local tsunamis. Lastly, numerical modeling of tsunamis done with support from the NTHMP is beginning to provide tools for real-time tsunami forecasting that should reduce the incidence of unnecessary warnings and provide more accurate forecasts for destructive tsunamis.  相似文献   

3.
The National Tsunami Hazard Mitigation Program (NTHMP) Steering Committee consists of representatives from the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), the U.S. Geological Survey (USGS), and the states of Alaska, California, Hawaii, Oregon, and Washington. The program addresses three major components: hazard assessment, warning guidance, and mitigation. The first two components, hazard assessment and warning guidance, are led by physical scientists who, using research and modeling methods, develop products that allow communities to identify their tsunami hazard areas and receive more accurate and timely warning information. The third component, mitigation, is led by the emergency managers who use their experience and networks to translate science and technology into user-friendly planning and education products. Mitigation activities focus on assisting federal, state, and local officials who must plan for and respond to disasters, and for the public that is deeply affected by the impacts of both the disaster and the pre-event planning efforts. The division between the three components softened as NTHMP scientists and emergency managers worked together to develop the best possible products for the users given the best available science, technology, and planning methods using available funds.  相似文献   

4.
In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years.  相似文献   

5.
The Washington State/Local Tsunami Work Group adopted the NOAA Weather Radio All-Hazards Warning System to warn citizens quickly and effectively of not only tsunami hazards but also other natural or man-made hazards. In concert with an array of deep ocean tsunami detectors, land-based seismic sensors, and warning messages issued by the tsunami warning centers, NWR provides a means to expeditiously get critical decision-making information to emergency managers, elected officials, and first responders. To implement the NWR strategy effectively, a partnership was developed to add a repeater to the NWR system to provide complete coverage to the coast of Washington and to shipping lanes off the coast. The Work Group also recognized the need to disseminate time critical hazard information on tsunamis to the public on beaches and in high traffic areas, so it developed a new notification system, with the first prototype installed on 2 July 2003 in Ocean Shores, Washington. A public education program also was developed to improve the impacted communities understanding of the tsunami hazard, the warning system, and actions they should take if a tsunami occurs.  相似文献   

6.
Probabilistic Tsunami Hazard Analysis (PTHA) can be used to evaluate and quantify tsunami hazards for planning of integrated community-level preparedness, including mitigation of casualties and dollar losses, and to study resilient solutions for coastal communities. PTHA can provide several outputs such as the intensity measures (IMs) of the hazard quantified as a function of the recurrence interval of a tsunami event. In this paper, PTHA is developed using a logic tree approach based on numerical modeling for tsunami generated along the Cascadia Subduction Zone. The PTHA is applied to a community on the US Pacific Northwest Coast located in Newport, Oregon. Results of the PTHA are provided for five IMs: inundation depth, flow speed, specific momentum flux, arrival time, and duration of inundation. The first three IMs are predictors of tsunami impact on the natural and built environment, and the last two are useful for tsunami evacuation and immediate response planning. Results for the five IMs are presented as annual exceedance probability for sites within the community along several transects with varying bathymetric and topographic features. Community-level characteristics of spatial distribution of each IM for three recurrence intervals (500, 1000, 2500 year) are provided. Results highlight the different pattern of IMs between land and river transects, and significant magnitude variation of IMs due to complex bathymetry and topographic conditions at the various recurrence intervals. IMs show relatively higher magnitudes near the coastline, at the low elevation regions, and at the harbor channel. In addition, results indicate a positive correlation between inundation depth and other IMs near the coastline, but a weaker correlation at inland locations. Values of the Froude number ranged 0.1–1.0 over the inland inundation area. In general, the results in this study highlight the spatial differences in IMs and suggest the need to include multiple IMs for resilience planning for a coastal community subjected to tsunami hazards.  相似文献   

7.
The Indian Ocean tsunami (IOT) of December 2004 has demonstrated that the coasts of Australia are vulnerable to tsunami flooding. As a consequence of the IOT, the Australian Federal Treasurer announced in 2005 that the Bureau of Meteorology and Geoscience Australia will jointly develop and implement the Australian Tsunami Warning System. Effective response to tsunami warnings is highly dependent on public awareness and perception of tsunami hazard and risk. At present, no efforts have been made to investigate and publish public awareness of tsunami hazard and risk and as such, emergency managers have little idea of the likely challenges to effecting appropriate tsunami risk management. We develop a short questionnaire survey instrument and trial that instrument in order to investigate its suitability for generating information about the perceptions of tsunami hazard and risk in the Sydney region. We found that the design, layout and format of the questionnaire were suitable for our purpose and should be useful for generating information appropriate to emergency management agencies tasked with the responsibility of developing tsunami education campaigns and risk mitigation strategies in Australia. However, certain limitations, such as individual question design and format, should be considered before a much larger survey of various stakeholders is conducted.  相似文献   

8.
Natural disasters can neither be predicted nor prevented. Urban areas with a high population density coupled with the construction of man-made structures are subjected to greater levels of risk to life and property in the event of natural hazards. One of the major and densely populated urban areas in the east coast of India is the city of Chennai (Madras), which was severely affected by the 2004 Tsunami, and mitigation efforts were severely dampened due to the non-availability of data on the vulnerability on the Chennai coast to tsunami hazard. Chennai is prone to coastal hazards and hence has hazard maps on its earth-quake prone areas, cyclone prone areas and flood prone areas but no information on areas vulnerable to tsunamis. Hence, mapping has to be done of the areas where the tsunami of December 2004 had directly hit and flooded the coastal areas in Chennai in order to develop tsunami vulnerability map for coastal Chennai. The objective of this study is to develop a GIS-based tsunami vulnerability map for Chennai by using a numerical model of tsunami propagation together with documented observations and field measurements of the evidence left behind by the tsunami in December 2004. World-renowned and the second-longest tourist beach in the world “Marina” present in this region witnessed maximum death toll due to its flat topography, resulting in an inundation of about 300 m landward with high flow velocity of the order of 2 m/s.  相似文献   

9.
Tsunami risk mitigation programs often include iconic evacuation signage to direct locals and visitors to safety during a tsunami event. This paper examines sign placement in Seaside, Oregon, from a visibility perspective. It leverages existing visibility analysis methodologies characterize the visibility of the community’s evacuation signage and reveals patterns in the viewable landscape. Additionally, we develop a topologically 3D approach to visibility analysis using raw LiDAR datasets. This applied work situates a discussion on existing patterns of visibility, how to improve existing signage placement, 2D and 3D representation of landscape, and the importance of visibility analysis. This work aims to stimulate discussion and development of hazard research that incorporates a visibility perspective.  相似文献   

10.
The Great Sumatra Tsunami on 26 December 2004 generated large amounts of debris and waste throughout the affected coastal region in the Indian Ocean. In Banda Aceh—Indonesia, the tsunami flows were observed carrying a thick muddy sludge that mixed with all kinds of debris from the destroyed buildings, bridges and culverts, vehicles, fallen trees, and other flotsam. This waste and debris was mostly deposited inland, but traveled both onshore and offshore. Numerical dispersal modeling is carried out to simulate the transport of debris and waste produced by the tsunamis during the event. The model solves the Lagrangian form of the transport/dispersion equations using novel particle tracking techniques. Model results show that understanding the pathway and distribution of the suspended materials and flotsam caused by tsunamis is important for a proper hazards mitigation plan and waste management action, and to minimize serious long-term adverse environmental and natural resources consequences.  相似文献   

11.
Both seismic and tsunami hazards design criteria are essential input to the rehabilitation and long-term development of city of Banda Aceh Post Sumatra 2004 (M w=9.3) disaster. A case study to develop design criteria for future disaster mitigation of the area is presented. The pilot study consists of probabilistic seismic and tsunami hazard analysis. Results of the probabilistic seismic hazard analysis indicates that peak ground acceleration at baserock for 10 and 2% probability of exceedance in 50 years is 0.3 and 0.55 g, respectively. The analysis also provides spectral values at short (T=0.2 s) and long period (T=1.0 s) motions. Some non-linear time-domain earthquake response analyses for soft, medium, and hard site-class were conducted to recommend design response spectra for each site-class. In addition, tsunami inundation maps generated from probabilistic tsunami hazard analysis were developed through tsunami wave propagation analysis and run-up numerical modeling associated with its probability of tsunamigenic earthquake source potential. Both the seismic and tsunami hazard curve and design criteria are recommended as contribution of this study for design criteria, as part of the disaster mitigation effort in the development process of the city. The methodology developed herein could be applied to other seismic and tsunami disaster potential areas.  相似文献   

12.
Among the coastal districts of mega city Istanbul, Bakirkoy is one of the most critical one with the importance of air and marine transportation and presence of many other coastal facilities and structures that are prone to suffer from marine hazards. In the history, the Sea of Marmara has experienced numerous earthquake and landslide events and associated tsunamis. Therefore, tsunami risk assessment is essential for all coastal districts of Istanbul, including Bakirkoy district. In this study, a further developed methodology for tsunami human vulnerability and risk assessment Metropolitan Tsunami Human Vulnerability Assessment (MeTHuVA) is applied for Bakirkoy district of Istanbul, considering earthquake generated tsunamis. High-resolution tsunami hazard analysis is performed with the integration of coastal inundation computation with tsunami numerical tool NAMI DANCE and tsunami human vulnerability assessment with GIS-based multi-criteria decision analysis methods (MCDA). Using analytical hierarchy process method of MCDA, a hierarchical structure is established, composed of two main elements of tsunami human vulnerability: Vulnerability at Location and Evacuation Resilience. Tsunami risk assessment for Bakirkoy district is calculated by integrating result of hazard and vulnerability assessments with a risk relation that includes a parameter (n), which represents the preparedness and awareness level of the community. Tsunami simulations revealed that the maximum inundation distance is over 350 m on land and water penetrates almost 1700 m along Ayamama stream. Inundation is observed in eleven neighborhoods of Bakirkoy district. In the inundation zone, maximum flow depth is found to be over 5.7 m. The inundated area forms 4.2% of whole Bakirkoy district, and 62 buildings are located in the inundation zone. Hazard, vulnerability and risk assessment results for different neighborhoods of Bakirkoy district are presented and discussed.  相似文献   

13.

Given the recent historical disastrous tsunamis and the knowledge that the Arabian Gulf (AG) is tectonically active, this study aimed to evaluate tsunami hazards in Kuwait from both submarine earthquakes and subaerial landslides. Despite the low or unknown tsunami risks that impose potential threats to the coastal area’s infrastructures and population of Kuwait, such an investigation is important to sustain the economy and safety of life. This study focused on tsunamis generated by submarine earthquakes with earthquake magnitudes (M w ) of 8.3–9.0 along the Makran Subduction Zone (MSZ) and subaerial landslides with volumes of 0.75–2.0 km3 from six sources along the Iranian coast inside the AG and one source at the Gulf entrance in Oman. The level of tsunami hazards associated with these tsunamigenic sources was evaluated using numerical modeling. Tsunami model was applied to conduct a numerical tsunami simulation and predict tsunami propagation. For landslide sources, a two-layer model was proposed to solve nonlinear longwave equations within two interfacing layers with appropriate kinematic and dynamic boundary conditions. Threat level maps along the coasts of the AG and Kuwait were developed to illustrate the impacts of potential tsunamis triggered by submarine earthquakes of different scales and subaerial landslides at different sources. GEBCO 30 arc-second grid data and others were used as bathymetry and topography data for numerical modeling. Earthquakes of M w 8.3 and M w 8.6 along the MSZ had low and considerable impacts, respectively, at the Gulf entrance, but negligible impacts on Kuwait. An earthquake of M w 9.0 had a remarkable impact for the entire Gulf region and generated a maximum tsunami amplitude of up to 0.5 m along the Kuwaiti coastline 12 h after the earthquake. In the case of landslides inside the AG, the majority impact occurred locally near the sources. The landslide source opposite to Kuwait Bay generated the maximum tsunami amplitudes reaching 0.3 m inside Kuwait Bay and 1.8 m along the southern coasts of Kuwait.

  相似文献   

14.
A tsunameter (soo-NAHM-etter) network has been established in the Pacific by the National Oceanic and Atmospheric Administration. Named by analogy with seismometers, the NOAA tsunameters provide early detection and real-time measurements of deep-ocean tsunamis as they propagate toward coastal communities, enabling the rapid assessment of their destructive potential. Development and maintenance of this network supports a State-driven, high-priority goal of the U.S. National Tsunami Hazard Mitigation Program to improve the speed and reliability of tsunami warnings. The network is now operational, with excellent reliability and data quality, and has proven its worth to warning center decision-makers during potentially tsunamigenic earthquake events; the data have helped avoid issuance of a tsunami warning or have led to cancellation of a tsunami warning, thus averting potentially costly and hazardous evacuations. Optimizing the operational value of the network requires implementation of real-time tsunami forecasting capabilities that integrate tsunameter data with numerical modeling technology. Expansion to a global tsunameter network is needed to accelerate advances in tsunami research and hazard mitigation, and will require a cooperative and coordinated international effort.  相似文献   

15.
Tsunami are one of the major natural hazards in the Caribbean. The historical record lists 88 tsunami, from local events to teletsunami, in the time period from 1489 to 1998. This study focuses on the spatial distribution and geomorphologic evidence related to coarse littoral sediment and boulder deposition by tsunami events of Holocene age in the Southern Caribbean. At a worldwide scale, these debris deposits represent the most extensive and impressive records of Holocene paleo-tsunami so far studied. Hitherto, the Leeward Lesser Antilles, consisting of the islands of Aruba, Curaçao and Bonaire, were not known to have had tsunami affecting their coastlines. The possible contribution of tsunami to configuring coastlines (e.g. the questions of embayment development, the coastal environment changes, and the absence of Holocene fringing reefs along the windward coasts) is discussed.  相似文献   

16.
Earthquakes and tsunamis along Morocco’s coasts have been reported since historical times. The threat posed by tsunamis must be included in coastal risk studies. This study focuses on the tsunami impact and vulnerability assessment of the Casablanca harbour and surrounding area using a combination of tsunami inundation numerical modelling, field survey data and geographic information system. The tsunami scenario used here is compatible with the 1755 Lisbon event that we considered to be the worst case tsunami scenario. Hydrodynamic modelling was performed with an adapted version of the Cornell Multigrid Coupled Tsunami Model from Cornell University. The simulation covers the eastern domain of the Azores-Gibraltar fracture zone corresponding to the largest tsunamigenic area in the North Atlantic. The proposed vulnerability model attempts to provide an insight into the tsunami vulnerability of building stock. Results in the form of a vulnerability map will be useful for decision makers and local authorities in preventing the community resiliency for tsunami hazards.  相似文献   

17.
This study is part of the hazards mitigation education program “research on teaching resources development and curriculum promotion on natural hazards mitigation at high school level.” This study demonstrated the implementation of a newly developed earth science curriculum module of typhoon hazards mitigation in a 10th grade high school classroom in Taiwan. The curriculum module design is a response to the calls for better natural hazards mitigation education in the school systems in Taiwan. Findings show that the curriculum module has resulted in the positive learning outcomes in both students’ learning achievement and attitude toward typhoon hazards mitigation. Findings also suggest that group discussion activities could enhance students’ thinking and experience sharing on the perceptions about typhoon hazards preparedness and mitigation. This study suggests that the hazards mitigation curriculum module to be added as a topic in the national high school curriculum guidelines.  相似文献   

18.
The 2004 tsunami that struck the Sumatra coast gave a warning sign to Malaysia that it is no longer regarded as safe from a future tsunami attack. Since the event, the Malaysian Government has formulated its plan of action by developing an integrated tsunami vulnerability assessment technique to determine the vulnerability levels of each sector along the 520-km-long coastline of the north-west coast of Peninsular Malaysia. The scope of assessment is focused on the vulnerability of the physical characteristics of the coastal area, and the vulnerability of the built environment in the area that includes building structures and infrastructures. The assessment was conducted in three distinct stages which stretched across from a macro-scale assessment to several local-scale and finally a micro-scale assessment. On a macro-scale assessment, Tsunami Impact Classification Maps were constructed based on the results of the tsunami propagation modelling of the various tsunami source scenarios. At this stage, highly impacted areas were selected for an assessment of the local hazards in the form of local flood maps based on the inundation modelling output. Tsunami heights and flood depths obtained from these maps were then used to produce the Tsunami Physical Vulnerability Index (PVI) maps. These maps recognize sectors within the selected areas that are highly vulnerable to a maximum tsunami run-up and flood event. The final stage is the development of the Structural Vulnerability Index (SVI) maps, which may qualitatively and quantitatively capture the physical and economic resources that are in the tsunami inundation zone during the worst-case scenario event. The results of the assessment in the form of GIS-based Tsunami-prone Vulnerability Index (PVI and SVI) maps are able to differentiate between the various levels of vulnerability, based on the tsunami height and inundation, the various levels of impact severity towards existing building structures, property and land use, and also indicate the resources and human settlements within the study area. Most importantly, the maps could help planners to establish a zoning scheme for potential coastline development based on its sensitivity to tsunami. As a result, some recommendations on evacuation routes and tsunami shelters in the potentially affected areas were also proposed to the Government as a tool for relief agencies to plan for safe evacuation.  相似文献   

19.
Tsunami deposits are the primary source of information on (past) large tsunami events and thereby are crucial for accurate hazard assessments. Tsunami deposits studies have developed over the last three decades, but this is still a young geoscience discipline. Following the 5th International Tsunami Field Symposium in 2017 an opportunity arose to publish a Special Issue focusing on present knowledge and future research challenges. This paper aims to briefly review current state-of-the-art research, summarizing major findings and gathering relevant works that describe the progress achieved over the last three decades. In this paper the relevance of tsunami deposits, their peculiar sedimentary characteristics and their differentiation from other high energy events are presented. Especially over the last decade an incredibly high number of studies have been published on tsunami deposits, many of which are of a high quality and provide detailed literature reviews. Some of these studies represent the current progress discussed here. Challenges are also introduced, to spur a discussion on future scientific questions that can and should be addressed by tsunami geoscientists. Coupling onshore–offshore records is an area where tsunami geoscience faces some of its major challenges. Moreover, the application of non-destructive high-resolution techniques to study the internal structure and composition of tsunami deposits can also provide an opportunity to further examine deposits, and from this derive physical parameters of the forcing mechanism. Another topic is better understanding of the erosional signature of tsunami events and a continuation of the effort to better incorporate age-estimation methods by developing more accurate dating methodology. Finally, there is also the need for the improvement of empirical, forward and regressive numerical models to better contribute to the characterization of tsunami events.  相似文献   

20.
The National Tsunami Hazard Mitigation Program is a multi-faceted approach that encompasses tsunami identification, alert and warning systems and a comprehensive approach to tsunami risk reduction. This paper describes efforts to promote land use planning and development practices that reduce tsunami risk by local elected government and administrative officials. Seven Principles of Tsunami Risk Reduction are presented that range from risk assessment to site planning criteria.Regional Administrator, California Governors Office of Emergency Services and Manager, California Integrated Seismic Network, Earthquake and Tsunami Program  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号