共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Claudio M. Valeriano Nuno Machado Antonio Simonetti Claudia S. Valladares Hildor J. Seer Luiz Sergio A. Simes 《Precambrian Research》2004,130(1-4):27-55
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U–Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana.Ages of detrital zircons (by ID–TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean–Paleoproterozoic ages (3.4–3.3, 3.1–2.7, and 2.5–2.4 Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3–1.9 Ga, with a peak at ca. 2.15 Ga) and to the ca. 1.75 Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2 Ga, with a peak at 1.3 Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0 Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9 Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin.Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6–1.2 Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt.Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630 Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605 Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt.Whilst continent–continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634–599 Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595–560 Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588 Ma, as indicated by monazite age.The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545–500 Ma in the Paraguay belt and ca. 500 Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50–100 million years. 相似文献
3.
4.
5.
6.
The role of intracontinental deformation in supercontinent assembly: insights from the Ribeira Belt,Southeastern Brazil (Neoproterozoic West Gondwana) 总被引:1,自引:0,他引:1 下载免费PDF全文
Vinícius T. Meira Antonio García‐Casco Caetano Juliani Renato P. Almeida Johann Hans D. Schorscher 《地学学报》2015,27(3):206-217
In this study, we challenge the multiple collision model for the tectonic evolution of the Neoproterozoic Ribeira Belt in Southeastern Brazil. New U–Pb SHRIMP data reveal Palaeoproterozoic (2153 ± 15 Ma) and Cryogenian (783 ± 6 and 768 ± 8 Ma) granitic rocks in the Embu Domain, and detrital zircon data of metasedimentary units from the Embu and Costeiro domains suggest a coherent tectonic evolution for the whole Ribeira Belt. Rather than by multiple collisions, these data are best explained by a simpler tectonic model involving continent (craton)‐volcanic arc collisions in the Dom Feliciano and Brasilia belts that led to intracontinental crustal thickening of the adjacent thinned hinterland (Ribeira Belt) at ~640–610 Ma, followed by widespread post‐collisional magmatism and rift‐related sedimentation at ~600–540 Ma. We suggest that intracontinental orogeny is a relevant process during supercontinent assembly, as illustrated here by the evolution of significant parts of the Brasiliano orogen. 相似文献
7.
The Fosdick Mountains migmatite–granite complex in West Antarctica records episodes of crustal melting and plutonism in Devonian–Carboniferous time that acted to transform transitional crust, dominated by immature oceanic turbidites of the accretionary margin of East Gondwana, into stable continental crust. West Antarctica, New Zealand and Australia originated as contiguous parts of this margin, according to plate reconstructions, however, detailed correlations are uncertain due to a lack of isotopic and geochronological data. Our study of the mid-crustal exposures of the Fosdick range uses U–Pb SHRIMP zircon geochronology to examine the tectonic environment and timing for Paleozoic magmatism in West Antarctica, and to assess a correlation with the better known Lachlan Orogen of eastern Australia and Western Province of New Zealand.NNE–SSW to NE–SW contraction occurred in West Antarctica in early Paleozoic time, and is expressed by km-scale folds developed both in lower crustal metasedimentary migmatite gneisses of the Fosdick Mountains and in low greenschist-grade turbidite successions of the upper crust, present in neighboring ranges. The metasedimentary rocks and structures were intruded by calc-alkaline, I-type plutons attributed to arc magmatism along the convergent East Gondwana margin. Within the Fosdick Mountains, the intrusions form a layered plutonic complex at lower structural levels and discrete plutons at upper levels. Dilational structures that host anatectic granite overprint plutonic layering and migmatitic foliation. They exhibit systematic geometries indicative of NNE–SSW stretching, parallel to a first-generation mineral lineation. New U–Pb SHRIMP zircon ages for granodiorite and porphyritic monzogranite plutons, and for leucogranites that occupy shear bands and other mesoscopic-scale structural sites, define an interval of 370 to 355 Ma for plutonism and migmatization.Paleozoic plutonism in West Antarctica postdates magmatism in the western Lachlan Orogen of Australia, but it coincides with that in the central part of the Lachlan Orogen and with the rapid main phase of emplacement of the Karamea Batholith of the Western Province, New Zealand. Emplaced within a 15 to 20 million year interval, the Paleozoic granitoids of the Fosdick Mountains are a product of subduction-related plutonism associated with high temperature metamorphism and crustal melting. The presence of anatectic granites within extensional structures is a possible indication of alternating strain states (‘tectonic switching’) in a supra-subduction zone setting characterized by thin crust and high heat flow along the Devonian–Carboniferous accretionary margin of East Gondwana. 相似文献
8.
9.
10.
Lower temperature eclogite (with T = 600 °C) represents a significant part of the occurrences of eclogite in orogenic belts. ‘True’ eclogite, with, for example, garnet + omphacite >70%, is well represented in such an occurrence. Calculated phase equilibria in Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO), for just one rock composition – that of a representative mid‐ocean ridge basalt, morb – are used to see under what circumstances ‘true’ eclogite is predicted to occur. The variables considered are not only pressure (P) and temperature (T) but also water content and oxidation state. The latter two variables are known to exert a significant control on mineral assemblage but are difficult to establish retrospectively from the observed rocks themselves. It is found that whereas oxidation state does have a strong effect on mineral assemblage, the key control on developing ‘true’ eclogite is shown to be temperature and water content. If temperature is established to be <600 °C, water content has to be low (less or much less than that for H2O saturation) in order for ‘true’ eclogite to form. Moreover, unless pressure is at the high end in the range considered, lawsonite eclogite and ‘true’ eclogite will tend to be mutually exclusive, with the former requiring high water content at the lower temperature where it occurs, but the latter requiring low water content. 相似文献
11.
Renata da Silva Schmitt Rudolph Allard Johannes Trouw Silvia Regina Medeiros Elton Luiz Dantas 《Gondwana Research》2008,13(4):502-515
Mafic gneisses and associated paragneisses from the Cabo Frio Tectonic Domain in the southeastern part of the Ribeira Belt, along the coast of Rio de Janeiro State in southeast Brazil, were subjected to a geochemical and Sm–Nd isotope study. Four lithotypes are distinguished: aluminous paragneisses (mainly sillimanite–kyanite–garnet–biotite gneiss), calcsilicate lenses, quartzo–feldspathic metasedimentary gneisses and mafic–ultramafic lenses. The whole-rock major and trace, including rare earth element distributions in the mafic–ultramafic intercalations indicate that derivation from subalkaline basalt/gabbro of tholeiitic affinity with E-MORB signature from a non-subduction environment. These mafic rocks have positive εNd(t) and TDM of 1.1 Ga. The metasedimentary rocks have negative εNd(t) and TDM of 1.7 Ga. A Sm–Nd whole rock isochron of mafic rocks yielded an age of 604 ± 38 Ma for the crystallization. This matches with the age of some detrital zircon grains from the paragneisses. The depositional basin, named Buzios–Palmital, was active at least until 620 Ma (age of the youngest detrital zircon) and was subsequently deformed and metamorphosed at ca. 525 Ma (age of metamorphic zircons) during the Buzios Orogeny. It is interpreted as a back arc basin with relation to the 630 Ma magmatic arc of the Oriental Terrane in the Ribeira Belt to the NW. However, after 600 Ma, the Buzios–Palmital basin changed to an active margin setting because the arc collided with the continental margin and the subduction shifted to the back arc environment. By 610 Ma, most of the Brasiliano belts registered collisional events related to multiple convergent blocks. The stress fields and paleocontinent shapes would have allowed the occurrence of extensional areas with not only sedimentary deposition but also ocean floor spreading. Its remnants are preserved in this Brazilian coastal region as an ancient suture, reworked intensively during the Mesozoic rifting events. The reconnaissance of Late Neoproterozoic basins in the Brasiliano–Pan-African belts is of major importance to partially unravel the final amalgamation events of SW Gondwana. Considering that the Buzios–Palmital basin rock units are mostly covered by the marginal Atlantic basins, it is possible that other evidence could be preserved in the coastal regions of SW-Africa and SE-South America. 相似文献
12.
In peninsular India, Gondwana strata are disposed linearly as strings of isolated basins conforming to the trend of the present day Koel–Damodar, Son–Mahanadi and Prahnita–Godavari river valleys. There are seven exposed and one concealed Gondwana basins/outliers in Orissa belonging to the Son–Mahanadi valley system. The present study is concerned with the consanguinity of the Talchir and Ong-river basins of Orissa. Similarity and dissimilarity of palaeocurrent population in these two basins were taken into consideration to test the consanguinity of the basins under consideration. Statistical analysis suggests that the sampled palaeocurrent data of the same formation belong to the same population when considered for both basins. In geologic terms, the basin parameters were identical when considered for either the Talchir or the Karharbari Formation that proves the consanguinity of both the basins and the possible existence of a master basin that encompassed other sister Gondwana basins in Orissa. 相似文献
13.
Y. Agbossoumond R.-P. Mnot J.L. Paquette S. Guillot S. Yssoufou C. Perrache 《Gondwana Research》2007,12(4):476-488
The Palimé–Amlamé Pluton (PAP) in southern Togo, consists of silica-rich to intermediate granitoids including enclaves of mafic igneous rocks and of gneisses. They are commonly called the “anatectic complex of Palimé–Amlamé” and without any convincing data, they were interpreted either as synkinematic Pan-African granitoids or as reworked pre Pan-African plutons. New field and petrological observations, mineral and whole-rock chemical analyses together with U–Pb zircon dating, have been performed to evaluate the geodynamic significance of the PAP within the Pan-African orogenic belt. With regard to these new data, the granitoids and related enclaves probably result from mixing and mingling processes between mafic and silicic magmas from respectively mantle and lower crust sources. They display Mg–calc-alkaline chemical features and present some similarities with Late Archaean granites such as transitional (K-rich) TTGs and sanukitoids.
The 2127 ± 2 Ma age obtained from a precise U/Pb concordia on zircon, points out a Paleoproterozoic age for the magma crystallization and a lower intercept at 625 ± 29 Ma interpreted as rejuvenation during Pan-African tectonics and metamorphism. Based on these results, a Pan-African syn to late orogenic setting for the PAP, i.e. the so-called “anatectic complex of Palimé–Amlamé”, can be definitively ruled out. Moreover according to its location within the nappe pile and its relationships with the suture zone, the PAP probably represents a fragment of the West African Craton reactivated during the Pan-African collision. 相似文献
14.
The Polish Geophysical Expedition to West Antarctica in the summer of 1979–1980 was organized by the Institute of Geophysics of the Polish Academy of Sciences. The purpose of the expedition was to carry out studies of deep structures of the Earth's crust by reflection, refraction and deep seismic sounding methods. Special attention was paid to tectonically active zones and to the contact zones between the blocks of the Earth's crust and the lithospheric plates. Geophysical measurements were carried out in the area extending between 61° and 65°S and between 56° and 66°W. The measurements covered the southern Shetlands, the Antarctic Peninsula, the Bransfield Strait, the Drake Passage, the Palmer Archipelago, the Gerlache Strait and the Bismarck Strait towards the southern Pacific.Deep seismic soundings were made along profiles with a total length of about 2000 km. Seismic reflection measurements were made along profiles about 1100 km long. A detailed analysis of the seismic wave field shows that the structure of the Earth's crust in this part of West Antarctica is very complex. Numerous deep fractures divide the Earth's crust into blocks of different physical properties. The thickness of the Earth's crust changes from 32 km in the region of the South Shetland Islands to 40–45 km in the region of the Antarctic Peninsula. A preliminary geodynamical model of this part of West Antarctica is presented. 相似文献
15.
The 5th meeting of the IUGS Lower Cretaceous Ammonite Working Group (the Kilian Group) held in Ankara, Turkey, 31st August 2013, discussed the Mediterranean ammonite zonation, and its calibration with different ammonite zonal schemes of the Boreal, Austral and Central Atlantic realms. Concerning the standard zonation, that corresponds to the zonal scheme of the West Mediterranean province, some changes have been made on two stages. For the Valanginian, the Busnardoites campylotoxus Zone was abandoned; the upper part of the lower Valanginian is now characterised by the Neocomites neocomiensiformis and Karakaschiceras inostranzewi zones. For the upper Barremian, the former Imerites giraudi Zone is here subdivided into two zones, a lower I. giraudi Zone and an upper Martellites sarasini Zone. The I. giraudi Zone is now subdivided into the I. giraudi and Heteroceras emerici subzones, previously considered as horizons. The current M. sarasini and Pseudocrioceras waagenoides subzones correspond to the lower and upper parts of the M. sarasini Zone, respectively. The Anglesites puzosianum Horizon is kept. The Berriasian, Hauterivian, Aptian and Albian zonal schemes have been discussed but no change was made. The upper Hauterivian zonal scheme of the Georgian (Caucasus) region (East Mediterranean province) has been compared with the standard zonation. Discussions and some attempts at correlations are presented here between the standard zonation and the zonal schemes of different palaeobiogeographical provinces: the North-West European area for the Valanginian and Hauterivian, the Argentinean region for the Berriasian, Valanginian and Hauterivian, and the Mexican area for the Valanginian–Hauterivian and Aptian–lower Albian. The report concludes with some proposals for future work. 相似文献
16.
<正>During April 3~(rd)–14~(th),the Third International Ophiolite Workshop of the International Geoscience Programme"Diamonds and Recycled Mantle"(IGCP-649)was successfully held in Havana,Cuba(Fig.1a).After the workshop,participants participated in a field trip to the Mayarí-Baracoa ophiolites and related chromitites in 相似文献
17.
2018年7月2日-16日,IGCP-649项目第四次研讨会于澳大利亚昆士兰大学成功召开,会议进行了为期两天的专题讨论,并对澳大利亚东海域法属小岛新喀里多尼亚的全球典型弧前蛇绿岩进行了为期8天的野外考察。本次研讨会由杨经绥院士主持的IGCP-649项目和Jonathan Aitchison教授所在的昆士兰大学地球科学学院联合举办。Aitchison教授作为东道主为本次会议致辞,杨经绥院士作为IGCP-649项目的牵头负责人,主持了研讨会的开幕式和闭幕式。来自中国、澳大利亚、新喀里多尼亚、美国和俄罗斯等国家的近70名科学家参加了此次会议讨论。会后考察由Jonathan Aitchison教授和来自新喀里多尼亚大学的Dominique Cluzel教授组织并全程作详细讲解。 相似文献
18.
19.
CHEN Baoyun YU Jinjie WANG Junliang TIAN Jiangtao LI Dahai LIU shuaijie WANG Cheng 《《地质学报》英文版》2018,92(2):857-858
正Objective The Early Permian mafic–ultramafic intrusions(298–270 Ma,Mao et al.,2008),which are widely distributed in different tectonic domains in North Xinjiang,host magmatic sulfide ore deposits,making North Xinjiang the second most important region for Ni resources in China.The bulk of Cu–Ni ore deposits in East Tianshan,making up a large portion of Ni resources in North Xinjiang,were 相似文献