首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reared larval zebra mussels,Dreissena polymorpha, and quagga mussels,D. bugensis, through and beyond metamorphosis (settlement) at salinities of 0–8‰. Juvenile zebra mussels gradually acclimated to 8‰ and 10‰ have been reared at these salinities for over 8 mo. Tolerance to both higher temperatures and higher salinities increases with larval age in both species (though zebra mussel embryos and larvae have a greater degree of salinity tolerance than quagga mussel embryos and larvae). Thus, only 6% of 3-day-old zebra mussel veligers survived after exposure to 4‰ for 8 additional days, whereas there was 22% survival of veligers placed in 4‰ at day 13 and grown to settlement 11 d later. Zebra mussel pediveligers, acclimated to increasing salinity in 2‰ increments beginning at day 23, continued to survive and grow in 8‰ after 5-mo exposure, though the growth rates of these juveniles were significantly less than those of juveniles reared in lower salinities. Quagga mussels did not metamorphose and settle as quickly as zebra mussel pediveligers. No quagga mussel pediveligers had settled before exposure to artificial fresh water (AFW), 2‰ 4‰, 6‰, and 8‰ on day 30. Percent settlement of these quagga mussel juveniles (based on 100% survival at the start of experiments on day 30) was 90% in AFW, 67% at 2‰, 69% at 4‰, 46% at 6‰, and 0.1% at 8‰.  相似文献   

2.
Oyster reefs provide structural habitat for resident crabs and fishes, most of which have planktonic larvae that are dependent upon transport/retention processes for successful settlement. High rates of freshwater inflow have the potential to disrupt these processes, creating spatial gaps between larval distribution and settlement habitat. To investigate whether inflow can impact subsequent recruitment to oyster reefs, densities of crab larvae and post-settlement juveniles and adults were compared in Estero Bay, Florida, over 22 months (2005–2006). Three species were selected for comparison: Petrolisthes armatus, Eurypanopeus depressus, and Rhithropanopeus harrisii. All are important members of oyster reef communities in Southwest Florida; all exhibit protracted spawning, with larvae present throughout the year; and each is distributed unevenly on reefs in different salinity regimes. Recruitment to oyster reefs was positively correlated with bay-wide larval supply at all five reefs examined. Species-specific larval connectivity to settlement sites was altered by inflow: where connectivity was enhanced by increased inflow, stock–recruitment curves were linear; where connectivity was reduced by high inflows, stock–recruitment curves were asymptotic at higher larval densities. Maximum recruit density varied by an order of magnitude among reefs. Although live oyster density was a good indicator of habitat quality in regard to crab density, it did not account for the high variability in recruit densities. Variation in recruit density at higher levels of larval supply may primarily be caused by inflow-induced variation in larval connectivity, creating an abiotic simulation of what has widely been regarded as density dependence in stock–recruitment curves.  相似文献   

3.
Willapa Bay has received a great deal of attention in the context of rising atmospheric CO2 and the concomitant effects of changes in bay carbonate chemistry, referred to as ocean acidification, and the potential effects on the bay’s naturalized Pacific oyster (Crassostrea gigas) population and iconic oyster farming industry. Competing environmental stressors, historical variability in the oyster settlement record, and the absence of adequate historical observations of bay-water carbonate chemistry all conspire to cast confusion regarding ocean acidification as the culprit for recent failures in oyster larval settlement. We present the first measurements of the aqueous CO2 partial pressure (PCO2) and the total dissolved carbonic acid (TCO2) at the “fattening line,” a location in the bay that has been previously identified as optimal for both larval oyster retention and growth, and collocated with a long historical time series of larval settlement. Samples were collected from early 2011 through late 2014. These measurements allow the first rigorous characterization of Willapa Bay aragonite mineral saturation state (Ωar), which has been shown to be of leading importance in determining the initial shell formation and growth of larval Crassostrea gigas. Observations show that the bay is usually below Ωar levels that have been associated with poor oyster hatchery production and with chronic effects noted in experimental work. Bay water only briefly rises to favorable Ωar levels and does so out of phase with optimal thermal conditions for spawning. Thermal and carbonate conditions are thus coincidentally favorable for early larval development for only a few weeks at a time each year. The limited concurrent exceedance of thermal and Ωar thresholds suggests the likelihood of high variability in settlement success, as seen in the historical record; however, estimates of the impact of elevated atmospheric CO2 suggest that pre-industrial Ωar conditions were more persistently favorable for larval development and more broadly coincident with thermal optima.  相似文献   

4.
Three models are combined to investigate the effects of changes in environmental conditions on the population structure of the Eastern oyster,Crassostrea virginica. The first model, a time-dependent model of the oyster population as described in Powell et al. (1992, 1994, 1995a,b, 1996, 1997) and Hofmann et al. (1992, 1994, 1995), tracks the distribution, development, spawning, and mortality of sessile oyster populations. The second model, a time-dependent larval growth model as described in Dekshenieks et al. (1993), simulates larval growth and mortality. The final model, a finite element hydrodynamic model, simulates the circulation in Galveston Bay, Texas. The coupled post-settlement-larval model (the oyster model) runs within the finite element grid at locations that include known oyster reef habitats. The oyster model was first forced with 5 yr of mean environmental conditions to provide a reference simulation for Galveston Bay. Additional simulations considered the effects of long-term increases and decreases in freshwater inflow and temperature, as well as decreases in food concentration and total seston on Galveston Bay oyster populations. In general, the simulations show that salinity is the primary environmental factor controling the spatial extent of oyster distribution within the estuary. Results also indicate a need to consider all environmental factors when attempting to predict the response of oyster populations; it is the superposition of a combination of these factors that determines the state of the population. The results from this study allow predictions to be made concerning the effects of environmental change on the status of oyster populations, both within Galveston Bay and within other estuarine systems supporting oyster populations.  相似文献   

5.
Restoration of the Chesapeake Bay ecosystem has been a priority for residents and governments of the bay watershed for the past decade. One obstacle in the efforts to “save the bay” has been continuing nutrient enrichment from agricultural and sewer runoff. The attainability of a mandated 40% nutrient reduction goal has yet to be seen. Furthermore, disappearance of certain organisms may have had an adverse effect on the resilience of the ecosystem. The Eastern oyster (Crassostrea virginica), once abundant in Chesapeake Bay, was a vital part of the food web, processing excess phytoplankton and depositing materials on the bottom. Over harvesting and disease have decimated the native oyster population. The introduction of an exotic species, the Japanese oyster (Crassostrea gigas), may be a way to reestablish a robust oyster community in the bay. The literature on the role of bivalve molluscs in estuarine ecosystems shows that they are an essential part of healthy estuaries around the world. A comparison ofC. virginica andC. gigas in terms of temperature and salinity tolerance and resistance to disease shows thatC. virginica is ideally adapted to conditions in Chesapeake Bay, but it is unable to stave off the endemic diseases, whereasC. gigas is adapted to conditions in the lower bay only but is much less susceptible to the same diseases. We conclude that the potential introduction ofC. gigas to Chesapeake Bay would be limited by the Japanese species’ physiological requirements but that the revitalization of a bivalve population is imperative to the restoration of ecosystem function.  相似文献   

6.
The eastern oyster (Crassostrea virginica) is affected by two protozoan parasites, Perkinsus marinus which causes Dermo disease and Haplosporidium nelsoni which causes MSX (Multinucleated Sphere Unknown) disease. Both diseases are largely controlled by water temperature and salinity and thus are potentially sensitive to climate variations resulting from the El Niño-Southern Oscillation (ENSO), which influences climate along the Gulf of Mexico coast, and the North Atlantic Oscillation (NAO), which influences climate along the Atlantic coast of the United States. In this study, a 10-year time series of temperature and salinity and P. marinus infection intensity for a site in Louisiana on the Gulf of Mexico coast and a 52-year time series of air temperature and freshwater inflow and oyster mortality from Delaware Bay on the Atlantic coast of the United States were analyzed to determine patterns in disease and disease-induced mortality in C. virginica populations that resulted from ENSO and NAO climate variations. Wavelet analysis was used to decompose the environmental, disease infection intensity and oyster mortality time series into a time–frequency space to determine the dominant modes of variability and the time variability of the modes. For the Louisiana site, salinity and Dermo disease infection intensity are correlated at a periodicity of 4 years, which corresponds to ENSO. The influence of ENSO on Dermo disease along the Gulf of Mexico is through its effect on salinity, with high salinity, which occurs during the La Niña phase of ENSO at this location, favoring parasite proliferation. For the Delaware Bay site, the primary correlation was between temperature and oyster mortality, with a periodicity of 8 years, which corresponds to the NAO. Warmer temperatures, which occur during the positive phase of the NAO, favor the parasites causing increased oyster mortality. Thus, disease prevalence and intensity in C. virginica populations along the Gulf of Mexico coast is primarily regulated by salinity, whereas temperature regulates the disease process along the United States east coast. These results show that the response of an organism to climate variability in a region is not indicative of the response that will occur over the entire range of a particular species. This has important implications for management of marine resources, especially those that are commercially harvested.  相似文献   

7.
Understanding the conditions that drive variation in recruitment of key estuarine species can be important for effective conservation and management of their populations. The Olympia oyster (Ostrea lurida) is native to the Pacific coast of North America and has been a target of conservation efforts, though relatively little information on larval recruitment exists across much of its range. This study examined the recruitment of Olympia oysters at biweekly to monthly intervals at four sites in northern San Francisco Bay from 2010 to 2015 (except 2013). Mean monthly temperatures warmed at all sites during the study, while winter (January–April) mean monthly salinity decreased significantly during a wet year (2011), but otherwise remained high as a result of a drought. A recurring peak in oyster recruitment was identified in mid-estuary, in conditions corresponding to a salinity range of 25–30 and >16 °C at the time of settlement (April–November). Higher average salinities and temperatures were positively correlated with greater peak recruitment. Interannual variation in the timing of favorable conditions for recruitment at each site appears to explain geographic and temporal variation in recruitment onset. Higher winter/spring salinities and warmer temperatures at the time of recruitment corresponded with earlier recruitment onset within individual sites. Across all sites, higher winter/spring salinities were also correlated with earlier onset and earlier peak recruitment. Lower winter salinities during 2011 also resulted in a downstream shift in the location of peak recruitment.  相似文献   

8.
The native Olympia oyster, Ostrea lurida, was once abundant in many US Pacific Northwest (PNW) estuaries, but was decimated by human activity in the late nineteenth early to twentieth centuries. Having been the subject of only few modern, detailed studies, a dearth of basic physiological information surrounded O. lurida and how it compared to the now dominant, non-native Pacific oyster, Crassostrea gigas. Utilizing laboratory and in situ studies in Yaquina Bay, OR, we explored the clearance rates of both species across a wide range of conditions. Pacific oysters not only had greater size-specific clearance rates than Olympia oysters, but also had a lower optimum temperature. Clearance rates for both species were reduced at lower salinity, at lower organic content, and at higher turbidity. Clearance rate models were constructed for each species using three approaches: (1) a single mechanistic model that incorporated feeding response functions of each species to the effects of temperature, salinity, turbidity, and seston organic content based on laboratory studies; (2) another additive model in which the number and type of response functions from laboratory studies were allowed to vary; and (3) a statistical model that utilized environmental data collected during in situ feeding trials. Clearance rate models that correlated feeding activity with in situ environmental data were found to often better predict oyster clearance rates (based on Adj R 2) for both species in Yaquina Bay, OR, than mechanistic, additive models based on laboratory feeding response functions; however, in situ correlative models varied in accuracy by species and season. This work represents important first steps towards better understanding the physiological ecology of the native Olympia oyster and how it differs from introduced and now dominant Pacific oyster.  相似文献   

9.
Macrozooplankton were sampled bi-weekly from October 1969 through May 1973 at 16 stations. Hydrological measurements, including water temperature and conductivity, accompanied each biological sample. Sampling sites and species were grouped by cluster analysis using Camberra-Metric measure of dissimilarity and flexible sorting. Two major seasons, based on taxon composition and abundance, were identified: A warm season (average water temperature above 22°C) dominated by larval and juvenile crustaceans, and a cool season with an abundance of larval fishes. Sites were more similar to each other within a year than they were between years. Differences between years correlated with variations in salinity and temperature. Community structure indices (Shannon-Weaver diversity, species richness and “evenness”) were applied to the seasonal data. Shannon diversity and “evenness” were positively correlated with each other, but richness values were often negatively correlated with the other two indices.  相似文献   

10.
The effects of location, salinity, and depth on recruitment and growth of the eastern oyster Crassostrea virginica in Pamlico and Core sounds, North Carolina, were investigated from 1988 to 1990. We measured length and density of spat settling on oyster cultch deployed at deep (~3 m) and shallow (~1 m) depths at six sites in areas with low salinity and six sites in areas with high salinity. These data were compared with similar data taken at some of these sites by the North Carolina Division of Marine Fisheries since 1981 as part of their cultch planting program. Recruitment was generally greater in the high salinity sites, compared to the low salinity sites. Recruitment was less at shallow depths compared to deeper depths. In all three years the highest recruitment occurred in August and September, corresponding to the months of maximum water temperature. Recruitment was highly variable in space and time, but appeared to diminish from 1988 to 1990. Recruitment was reduced by sedimentation and a variety of sessile organisms. All sites appeared to have a similar potential for growth.  相似文献   

11.
A habitat suitability index (HSI) model, developed for the American oyster,Crassostrea virginica, along the Gulf of Mexico, was field tested on 38 0.1-ha reef and nonreef sites in Galveston Bay, Texas. The HSI depends upon six (HSI1) or, optionally, eight (HSI2) variables. The six variables are percent of bottom covered with suitable cultch (V1), mean summer water salinity (V2), mean abundance of living oysters (V3) (a gregarious settling factor), historic mean water salinity (V4), frequency of killing floods (V5), and substrate firmness (V6). The optional variables are the abundance of the southern oyster drillThais haemostoma (V7), and the intensity of the oyster pathogenPerkinsus marinus (V8). The HSI values were lowest at high and low salinity sites and highest at intermediate-salinity sites. To validate the model, the hypothesis that the output of the HSI model was correlated with oyster density was therefore tested. A significant correlation was found between HSI1 and oyster density (Kendall Tau Beta correlation coefficient, τ=0.674, p<0.001, n=38); however, a statistical independence problem exists with the above test, that is, oyster density is both the independent standard for the test and a variable in the model. A regression model was constructed to test the relationship between log-transformed oyster density values (dependent variable) and the other variables of the model (independent variables). Most variation (r2=0.72, r=0.85) in the log-transformed density values were explained by a regression model that contained V2, V4, V5, V6, V7, and V8 as independent variables. The regression model was useful in constructing a modified HSI model (MHSI). A significant correlation (τ=0.674, p<0.05, n=10) was found between MHSI1 values and oyster densities from reefs closed to harvesting. The MHSI improves upon the original model by (i) simplifying the model structure, (ii) removing the requirement to measure V3, (iii) accounting better for the negative effects of high salinity, disease, and parasitism upon oysters, and (iv) eliminating the statistical independence problem by dropping V3 from the model. The MHSI should be tested against a new, independently-collected data set.  相似文献   

12.
In coastal Louisiana, the development of large-scale freshwater diversion projects has led to controversy over their effects on oyster resources. Using controlled laboratory experiments in combination with a field study, we examined the effects of pulsed freshwater events (freshet) of different magnitude, duration, and rate of change on oyster resources. Laboratory and field evidence indicate that low salinity events (<5 psu) decreased Perkinsus marinus infection intensities. Furthermore, when salinity was low (<5 psu), parasite infection intensities continued to decrease even as temperatures exceeded 20°C. At the same time, oyster growth was positively correlated with salinity. To maximize oyster production, data indicate that both low and high salinity events will be necessary.  相似文献   

13.
Management and restoration of wild oyster populations with the ecosystem services they provide require detailed understanding of oyster population dynamics, including temporally and spatially varying growth. Much of the existing literature documenting growth rates for eastern oysters (Crassostrea virginica) reports growth for large, protected, and/or hatchery-spawned oysters. By following growth of wild oysters set on planted clamshells in Delaware Bay, we document early growth (within the first year) of 21 wild oyster cohorts settling over 8 years and assess the importance of interannual variability in temperature and salinity. In general, oysters follow a linear growth trajectory in the first year of life, interspersed by periods of little to no growth in the colder months. Wild oysters settling in the Delaware Bay mid-salinity region reach a size between 27 and 33 mm in their first year and tend to reach greater shell heights at 1 year of age in higher salinity years and at temperatures averaging 23 °C. Multi-year, population-level estimates of wild growth such as these are important for understanding changes in restored and managed oyster populations, and resulting ecosystem services, under naturally variable conditions.  相似文献   

14.
Zooplankton abundance and distribution patterns were determined for six seasonally important invertebrate taxa (bivalve veligers, gastropod veligers, polychaete larvae, barnacle nauplii, calanoid copepod adults and nauplii) and a diurnally important taxon (decapod zoea) around a restored oyster reef in the Piankatank River, Virginia. Data were collected on spatial scales of hundreds of meters and seasonal (May through October), diel (day-night), and tidal (3 h) temporal scales. Significant seasonal and diel patterns in abundance were observed for all taxa. Tidal influences alone appear to be less important than seasonal and diel patterns for most taxa but the interation of tidal and diel cues may have caused the observed diel zooplankton distribution patterns in both June and August 1996. Zooplankton taxa around the oyster reef were distributed non-randomly (patchily) regardless of their horizontal location with regard to the reef. Seasonal pulses in zooplankton abundance relate directly to life history patterns and reproductive cycles for individual taxa. Reef benthic fauna have the capacity to directly influence the composition and absolute abundance of the overlying zooplankton community and indirectly influence oyster reef community trophic dynamics.  相似文献   

15.
Prey ingested byMnemiopsis mccradyi collected in Link Port (Indian River, east coast of central Florida) consisted mostly of copepod nauplii, barnacle nauplii, bivalve veligers, and adult copepods (Acartia sp.,Oithona sp.); abundances in that order. Compared to relative in situ densities, there was an increased consumption of barnacle nauplii, bivalve veligers, andAcartia sp., and a decreasesed consumption of copepod nauplii andOithona sp., implying that prey selection had occurred. In situ clearance rates (based on numbers of ingested prey, digestion rates, and in situ prey densities) forM. mccradyi (5 cm mean length) were 0.1 to 1.31 h?1 individual?1, depending on prey taxon. These rates are less than those measured previously in the laboratory; however, it is not possible to state if this difference is statistically significant.  相似文献   

16.
Oxygen consumption rates were measured individually for mixed groups of male, female, and immature striped bass,Morone saxatilis, in filtered Patuxent River, Maryland, water and in filtered water containing suspensions of either fuller’s earth or Patuxent River sediment. Oxygen consumption was determined at fixed swimming speeds at two temperatures, 15 and 22.5°C. Oxygen consumption of striped bass in filtered 15°C water increased as swimming speed increased. At 22.5°C, the same range of swimming speeds had no effect on rates of oxygen consumption. Similar data were obtained with fish swimming at the same speeds in water containing 0.79 g per liter fuller’s earth particles (15°C), and among those swimming at 31.7 and 49.0 cm per s in water containing 1.32 g per 1 Patuxent River sediment (22.5°C). Male and female striped bass respiration rates were similar under all test conditions. At 15°C, striped bass oxygen consumption rates during exposure to fuller’s earth while swimming at 8.6 and 31.7 cm per s did not differ from rates of fish swimming at the same speeds in filtered water. At 49.0 cm per s, rates were significantly depressed. Respiration rates of fish exposed to Patuxent River sediment at 22.5°C while swimming at 31.7 and 49.0 cm per s were significantly lower than those of fish in filtered water. Respiratory response of striped bass to suspended particle stress was manifested by depressed oxygen consumption. This is considered a short-term response to an acute stress. This response and the potential for hematological response to chronic suspended particle stress are discussed.  相似文献   

17.
Habitat selection capabilities of the recruiting larval stages of marine invertebrates are limited, in part, by their ability to maneuver in flowing water. Distributional and experimental evidence suggest that blue crab (Callinectes sapidus) megalopae may preferentially settle into vegetated habitats. However, the behavior and swimming capabilities of megalopae in flowing water have not previously been investigated. Laboratory experiments were conducted in a small, recirculating seawater flume to determine the swimming response of megalopae to varying flow velocities. Nighttime trials were conducted at six flow velocities: 0, 1.9, 3.6, 4.8, 6.3, and 9.3 cm s?1. Behavior and swimming velocities of field-collected C. sapidus megalopae were video recorded. Megalopae exhibited negative phototaxis and were found in the water column at all flows in the dark. The maximum sustained swimming speed observed was 12.6 cm s?1 and the mean swimming speed in still water was 5.0 cm s?1, with short bursts in excess of 20 cm s?1. Megalopae frequently oriented into the current and were capable of swimming upstream against the current at flow speeds <4.8 cm s?1; at greater velocities they were not able to do so. The results suggest that at low to moderate current velocities C. sapidus megalopae have the ability to actively move in search of settlement sites and to maintain their positions in desirable sites rather than relying strictly on passive movements by currents.  相似文献   

18.
Disturbance combined with the effects of multiple stress gradients can produce biotic outcomes that are complex and perhaps not predictable based on knowledge of the individual stress variables. We analyzed oyster (Crassostrea virginica) colonization of novel substrate via structural equation modeling (SEM) to test cause-and-effect multivariate models posed a priori as hypotheses. We separately analyzed long-term data on water quality (WQ), canal flow, and rainfall to determine drivers of chlorophyll a for use in the oyster SEM. The best oyster SEM for adult (R 2 = 0.74) and small <20-mm (R 2 = 0.48) oyster abundances combined WQ stress gradients produced by normal canal flow with disturbance caused by extremely high flow. There was a ?0.26 direct negative effect of increasing salinity during normal canal flow on the small oyster size class possibly reflecting undocumented increases in marine predators and a negative total effect (negative indirect + direct effects) of the salinity gradient on adult oysters. Very low salinity occurring during extreme (disturbance) canal flows produced large negative direct and total effects on small oysters, but no significant total effect for adult oysters. Chlorophyll a (Chl-a) during normal canal flow had negative total effects on small oysters but positive total effects on adult oysters. The effect of max Chl-a on adult oysters was strongly negative during disturbance-level canal flow. Turbidity during normal canal flow had no effect on small or adult oysters. However, during disturbance flows, the maximum turbidity had strong negative effects. Stress and disturbance from freshwater releases impacted oyster recruitment and survival, affecting the colonization and growth of oysters.  相似文献   

19.
From 1977 to 1980, samples of barnacles were collected (as opportunities arose) from 61 subtidal locations (mostly oyster beds) around Chesapeake Bay, Maryland. Three species were identified from the area.Balanus improvisus dominated, comprising 83% of the 8,231 barnacles identified, and was collected at all locations but one. It occurred over a collection salinity range of 0.8‰ to 17.9‰.Balanus subalbidus (14% of the barnacles identified) was collected over the same salinity range, but mainly in lower salinity waters.Balanus eburneus was scarce (2% of the barnacles identified) and was collected at higher salinities (8.5‰ to 17.1‰).  相似文献   

20.
Studies were performed at the Port of Everett, Washington, and the associated Snohomish River Estuary, to establish settlement patterns of veliger of the shipworm,Bankia setecea. Estuarine waters at the Port of Tacoma also were sampled for shipworm activity. Veliger settlement patterns at the Port of Everett indicated settlement took place all year, with major activity during August–October. This also was a period of reduced Snohomish River flow; therefore, logs stored in the estuary during 1989 at 1.9–3.0 km up river from the river’s mouth were attacked byB. setacea as the salinity of these log-storage sites increased. In contrast, major movement of veligers at the Port of Tacoma was in early summer; high water temperatures were though to prevent midsummer settlement. The upper side of wooden samplers were significantly more infested by shipworms than the under side. Veliger settlement increased evenly with depth down to the mudline discontinuity. Veligers attacked fresh wooden samplers at a significantly higher rate when these samplers were placed next to wood that had been exposed previously to shipworm attack for over 8 wk. There was proportionally less attack on fresh wooden samplers when these samplers were placed next to material exposed to attack for 4 wk; the least attack on fresh wooden samplers occurred when they were placed adjacent to unnattacked wood that had been exposed to marine water for a month (screening prevented this material from being infested). These results suggested that there were waterborne cues emanating from previously-attacked material that attracted veligers. There were significantly moreB. setacea attacks on wooden samplers that were half-covered with Douglas-fir bark as compared with samplers half-covered with foam plastic. These data confirmed observations that shipworms severely attack Douglas-fir logs at sites where the bark has been peeled off, an indication that settling veliger larvae may respond to host-mediated chemical cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号