首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of zooplankton in a salt marsh ecosystem was studied in Flax Pond, Old Field, N. Y., a 30-hectare tidal pond adjacent to Long Island Sound. Various marine crustaceans accounted for over 95% of the zooplankton caloric biomass in all but three months, in which ctenophores (Mnemiopsis leidyi) accounted for about 20%. Mass balance analysis of crustacean biomass showed a seasonal trend with increased “consumption” by the marsh from July to November. Analysis of groups (or species) for all months showed total numbers were reduced by passing through, or interacting with, the marsh. The most abundant group for each sample date also was significantly reduced from outflowing waters for all months, as were the group copepodids and miscellaneous calanoids from July to November. The energy requirements for the crustacean zooplankton community could have been supplied amply by the estimated standing crop of phytoplankton in the marsh. Phytoplankton net primary production was low, but it was ample to satisfy crustacean energy needs in all months. Crustaceans and phytoplankton alone were not enough to support estimated ctenophore nutrition requirements in summer. Therefore, detritus may also have been an important ctenophore food source.  相似文献   

2.
We report electrochemical profiles from unvegetated surficial sediments of a Georgia salt marsh. In creek bank sediments, the absence of Sigma H2S or FeSaq and the presence of Fe(III)-organic complexes suggest that Mn and Fe reduction dominates over at least the top ca. 5 cm of the sediment column, consistent with other recent results. In unvegetated flats, accumulation of Sigma H2S indicates that SO42- reduction dominates over the same depth. A summer release of dissolved organic species from the dominant tall form Spartina alterniflora, together with elevated temperatures, appears to result in increased SO42- reduction intensity and hence high summer concentrations of Sigma H2S in flat sediments. However, increased bioturbation and/or bioirrigation seem to prevent this from happening in bank sediments. Studies of biogeochemical processes in salt marshes need to take such spatial and temporal variations into account if we are to develop a good understanding of these highly productive ecosystems. Furthermore, multidimensional analyses are necessary to obtain adequate quantitative pictures of such heterogeneous sediments.  相似文献   

3.
We report electrochemical profiles from unvegetated surficial sediments of a Georgia salt marsh. In creek bank sediments, the absence of ΣH2S or FeSaq and the presence of Fe(III)–organic complexes suggest that Mn and Fe reduction dominates over at least the top ca. 5 cm of the sediment column, consistent with other recent results. In unvegetated flats, accumulation of ΣH2S indicates that SO4 2- reduction dominates over the same depth. A summer release of dissolved organic species from the dominant tall form Spartina alterniflora, together with elevated temperatures, appears to result in increased SO4 2- reduction intensity and hence high summer concentrations of ΣH2S in flat sediments. However, increased bioturbation and/or bioirrigation seem to prevent this from happening in bank sediments. Studies of biogeochemical processes in salt marshes need to take such spatial and temporal variations into account if we are to develop a good understanding of these highly productive ecosystems. Furthermore, multidimensional analyses are necessary to obtain adequate quantitative pictures of such heterogeneous sediments.  相似文献   

4.
We used137Cs-dating to determine vertical accretion rates of 15 salt marshes on the Bay of Fundy, the Gulf of St. Lawrence, and the Atlantic coast of Nova Scotia. Accretion rates are compared to a number of factors assumed to influence vertical marsh accretion: rates of relative sea-level rise, climatic parameters (average daily temperatures and degree days) and latitude (related to insolation and day length), sediment characteristics (organic matter inventory, bulk, mineral, and organic matter density), distance of the core site from the nearest source of tidal waters, and the tidal range. Uniques to our study is a consideration of climatic parameters and latitude, which should influence organic matter production, and thus vertical accretion rates. Significant predictors of accretion rates (in order of importance) were found to be organic matter inventory, distance from a creek, and range of mean tides. Contrary to conclusions from previous studies, we found that accretion rates decreased with increasing tidal range, probably because we considered a wider span of tidal ranges, from micro- to macrotidal. Although four marshes with low organic matter inventories also show a deficit in accretion with respect to relative sea-level rise, organic matter is not limiting in two-thirds of the marshes studied, despite shorter growing seasons.  相似文献   

5.
Seasonal patterns of microbially-mediated nitrogen cycling via the nitrification-denitrification pathway were compared between a natural and a restored salt marsh. Sedimentary denitrification rates, measured with a modification of the acetylene block technique, were approximately 44 times greater in the natural marsh relative to an adjacent transplanted marsh. Nitrification rates were similar at both sites. The difference in denitrification rates was attributed to oxygen inhibition at low tide and tidal flushing of porewater nutrients at high tide in the coarse sediments of the restored marsh. Denitrification was positively correlated with nitrification throughout the year in the natural marsh with a seasonal fall peak in denitrification corresponding to a maximum in porewater ammonia concentration. A weak correlation existed between the two processes in the restored marsh, where nitrification rates exceeded denitrification rates by a factor of 20. Transplanted marsh denitrification rates exhibited a spring peak, corresponding to elevated porewater ammonia concentrations. Our findings demonstrate functional differences in microbial nitrogen dynamics of a young (0–3 yr) restored marsh relative to a mature (>50 yr) salt-marsh system. *** DIRECT SUPPORT *** A01BY070 00008  相似文献   

6.
Coastal waters are severely threatened by nitrogen (N) loading from direct groundwater discharge. The subterranean estuary, the mixing zone of fresh groundwater and sea water in a coastal aquifer, has a high potential to remove substantial N. A network of piezometers was used to characterize the denitrification capacity and groundwater flow paths in the subterranean estuary below a Rhode Island fringing salt marsh.15N-enriched nitrate was injected into the subterranean estuary (in situ push-pull method) to evaluate the denitrification capacity of the saturated zone at multiple depths (125–300 cm) below different zones (upland-marsh transition zone, high marsh, and low marsh). From the upland to low marsh, the water table became shallower, groundwater dissolved oxygen decreased, and groundwater pH, soil organic carbon, and total root biomass increased. As groundwater approached the high and low marsh, the hydraulic gradient increased and deep groundwater upwelled. In the warm season (groundwater temperature >12 °C), elevated groundwater denitrification capacity within each zone was observed. The warm season low marsh groundwater denitrification capacity was significantly higher than all other zones and depths. In the cool season (groundwater temperature <10.5 °C), elevated groundwater denitrification capacity was only found in the low marsh. Additions of dissolved organic carbon did not alter groundwater denitrification capacity suggesting that an alternative electron donor, possibly transported by tidal inundation from the root zone, may be limiting. Combining flow paths with denitrification capacity and saturated porewater residence time, we estimated that as much as 29–60 mg N could be removed from 11 of water flowing through the subterranean estuary below the low marsh, arguing for the significance of subterranean estuaries in annual watershed scale N budgets.  相似文献   

7.
The accumulation of selected plant nutrients and heavy metals in a rapidly accreting Louisiana salt marsh was examined. Sedimentation processes were shown to be supplying large amounts of plant nutrients to the marsh. Accumulation of heavy metals was low and appeared to be associated with the natural heavy metal content of incoming sediment rather than from a pollution source. A large portion of organic carbon from primary production remained in the marsh, contributing to the aggradation process of vertical marsh accretion. Nitrogen accumulated in the marsh at rates as great as 21 g per m2 per yr.  相似文献   

8.
Seasonal distribution of sulfur fractions in Louisiana salt marsh soils   总被引:2,自引:0,他引:2  
The profile distributions of specific sulfur forms were examined at a site in a Louisiana salt marsh over a 1-yr period. Soil samples were fractionated into acid-volatile sulfides, HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester-sulfate sulfur, carbon-bonded sulfur, and total sulfur. Inorganic sulfur constituted 16% to 36% of total sulfur, with pyrite sulfur representing <2%. Pyrite sulfur content in marsh soil was relatively high in winter. Pyrite sulfur and elemental sulfur together accounted for 4% to 24% of the inorganic sulfur fraction. Between 74% and 95% of inorganic sulfur was present as the HCl-soluble sulfur form. A significant negative correlation between acid-volatile sulfides and elemental sulfur observed in summer suggested the transformation of fulfides to elemental sulfur. Organic sulfur, in the forms of ester-sulfate sulfur and carbon-bonded sulfur, predominated in all sampling periods, comprising 64% to 84% of total sulfur. The conversion of ester-sulfate sulfur into carbon-bonded sulfur was more likely to occur in winter than in other seasons. Carbon-bonded sulfur accounted for 53% to 89% of the organic sulfur. Organic sulfur was the major contributor to the variation of total sulfur in all seasons studied. Total sulfur concentration showed a statistically significant increase with depth.  相似文献   

9.
Monthly measurements of suspended sediment concentration and salinity were made at 29 stations along the axis of Long Island Sound from August 1987 through February 1988. The measurements were combined in a 29-segment, two-layer box model to calculate the total sediment fluxes and accumulation rates. Estimates of the total suspended load range from 300,000 metric tons, corresponding to an average residence time of about 2.3 months. Average accumulation rates calculated with the model ranged from about 0.024 mm month?1 to 0.150 mm month?1 for a net annual rate of 0.92 mm yr?1. This is in good agreement with geochemically determined sedimentation rates of 0.75±0.13 mm yr?1 and suggests an oceanic source of sediment equivalent to about 45% of the mud accumulated in the sound.  相似文献   

10.
In order to test the assumption that accretion rates of intertidal salt marshes are approximately equal to rates of sea-level rise along the Rhode Island coast,210Pb analyses were carried out and accretion rates calculated using constant flux and constant activity models applied to sediment cores collected from lowSpartina alterniflora marshes at four sites from the head to the mouth of Narragansett Bay. A core was also collected from a highSpartina patens marsh at one site. Additional low marsh cores from a tidal river entering the bay and a coastal lagoon on Block Island Sound were also analyzed. Accretion rates for all cores were also calculated from copper concentration data assuming that anthropogenic copper increases began at all sites between 1865 and 1885. Bulk density and weight-loss-on-ignition of the sediments were measured in order to assess the relative importance of inorganic and organic accumulation. During the past 60 yr, accretion rates at the eight low marsh sites averaged 0.43±0.13 cm yr?1 (0.25 to 0.60 cm yr?1) based on the constant flux model, 0.40±0.15 cm yr?1 (0.15 to 0.58 cm yr?1) based on the constant activity model, and 0.44±0.11 cm yr?1 (0.30 to 0.59 cm yr?1) based on copper concentration data, with no apparent trend down-bay. High marsh rates were 0.24±0.02 (constant flux), 0.25±0.01 (constant activity), and 0.47±0.04 (copper concentration data). The cores showing closest agreement between the three methods are those for which the excess210Pb inventories are consistent with atmospheric inputs. These rates compare to a tide gauge record from the mouth of the bay that shows an average sea-level rise of 0.26±0.02 cm yr?1 from 1931 to 1986. Low marshes in this area appear to accrete at rates 1.5–1.7 times greater than local relative sea-level rise, while the high marsh accretion rate is equal to the rise in sea level. The variability among the low marsh sites suggests that marshes may not be poised at mean water level to within better than ±several cm on time scales of decades. Inorganic and organic dry solids each contributed about 9% by volume to low marsh accretion, while organic dry solids contributed 11% and inorganic 4% to high marsh accretion. Water/pore space accounted for the majority of accretion in both low and high marshes. If water associated with the organic component is considered, organic matter accounts for an average of 91% of low marsh and 96% of high marsh accretion. A dramatic increase in the organic content at a depth of 60 to 90 cm in the cores from Narragansett Bay appears to mark the start of marsh development on prograding sand flats.  相似文献   

11.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

12.
Sulfate reduction rate (SRR) and pools of reduced inorganic sulfur, acid volatile sulfide (AVS), chromium reducible sulfur (CRS), and elemental sulfur (So), were studied from June 1990 till March 1992 at two locations on the Ballastplaat mudflat in the Scheldt estuary. The sediment composition at station A was mainly sand with low organic content whereas sediments at station B were dominated by silt and clay with high organic content. SRR was positively related to temperature; more pronounced at station B (Ea=190 kJ mol−1) than at station A (Ea=110 kJ mol−1). The maximum SRR values observed equalled 14 μmol cm−3 d−1 at station B and 1 μmol cm−3 d−1 at station A. AVS was the dominant radiolabelled end product of the sulfate reduction reaction, except in surface sediments where pyrite and So were more dominant. However, CRS was the predominant reduced inorganic sulfur pool in the sediments. Both AVS and CRS pools showed temporal variations out of phase with SRR. SRR peaked in summer, while the concentrations of AVS and CRS were highest in fall. The accumulation of AVS and CRS started late summer after depletion of oxidants, which had accumulated during winter and spring. The estimated annual SRR and thus sulfide production in the upper 15 cm of station B was of the order of 100 mol m−2 yr−1, and at station A of the order of 12 mol m−2 yr−1. The sulfur mass balance shows that only a very small fraction, if any, of the produced sulfide is retained as reduced inorganic sulfur in the sediment.  相似文献   

13.
Experimental chambers were used in a Virginia salt marsh to partition the tidal flux of dissolved nutrients occurring at the marsh surface and in the water column. On five dates from June to October 1989, six replicate chambers in the short Spartina alterniflora zone were monitored over complete tidal cycles. When reservoir water, used to simulate tidal flooding in the chambers, was initially low in dissolved nutrients, the marsh surface was a source of both ammonium and phosphate to the water column. Calculations of the physical processes of diffusion and advection could not account for total nutrient release from the marsh surface. We hypothesize the primary source of nutrients was organic matter mineralization in surface sediments, which released nutrients into the flooding water column. Assimilation (uptake) of phosphate measured in water-column incubation experiments was nearly equal to phosphate released from the marsh surface. Surface release of ammonium, however, was somewhat greater than water-column uptake. In this salt marsh, benthic production and release of ammonium and phosphate is comparable in magnitude to pelagic consumption, thereby yielding only a small “net” transfer of these nutrients to the estuary.  相似文献   

14.
Analyses of organic content, pollen, and the carbon-isotopic composition of a 3.5-m sediment core collected from a subsided tidal marsh located in South San Francisco Bay, California, have provided a 500-yr record of sediment accretion and vegetation change before, during, and after a rapid 1 m increase in sea level. Core chronology was established using14C dating of fossil plant material, the first appearance of pollen types produced by plants not native to California, and changes in lead concentrations coincident with anthropogenic contamination. Prior to the mid 19th century, rates of sediment accretion were between 1 and 4 mm yr−1; sediment accretion accelerated to an average of 22 mm yr−1 following the initiation of subsidence. Changes in tidal marsh vegetation also accompanied this depositional change. Vegetation shifted from a high to low marsh assemblage, as indicated by a larger percentage of grass pollen, rhizomes ofSpartina foliosa, and a strong C4 signal. Between 1980 and 2001, Triangle marsh again developed high marsh vegetation, as indicated by higher percentages of the Amaranthaceane pollen type, seed deposition, includingSalicornia spp., and more negative carbon isotopic ratios.  相似文献   

15.
In restored salt marshes, seedling recruitment can be limited where large areas of soil are exposed and physical conditions are harsh. On a 0.7-ha excavated marsh plain, we studied recruitment as a function of abiotic (elevation) and biotic factors in 2 × 2 m plots planted with 0, 1, 3, or 6 species from the pool of 8 native halophytes. The random draws of 3-species and 6-species assemblages produced approximately equal numbers of plants per species for the experiment as a whole, yet only three species recruited> 10 seedlings per plot.Salicornia virginica andSalicornia bigelovii each produced> 15,000 seedlings in 1998, andSuaeda esteroa produced> 2,500 seedlings in 1999. For these 3 species, seedling recruitment increased with elevation in 1998, but this trend weakened in 1999, when species richness affected recruitment (fewer seedlings in more species-rich plots). Abiotic effects preceded biotic interactions in determining seedling recruitment patterns early in the development of the salt marsh. Effects of species richness appeared to be scale-dependent in that having all species present in the site likely enhanced overall recruitment (all species had 2 or more seedlings), while plantings of 6 species in a 2 × 2 m plot reduced seedling density.S. virginica was the only species that increased its presence and relative cover in the experimental site over the 4-yr study. Protocols for planting southern California salt marsh restoration sites could omit this species, but all others probably need to be introduced to restore diverse vegetation.  相似文献   

16.
Phosphorus (P) species concentrations in 0–2 cm surface sediment layer were investigated monthly from November 2001 to December 2002 at the bay, channel and open sea stations in the middle Adriatic. Modified SEDEX method was used for inorganic phosphorus species determination [P in biogenic (P-FD), authigenic (P-AUT), detrital apatite (P-DET) and P adsorbed on to iron oxides and hydroxides (P–Fe)], and organic phosphorus (P-ORG). P-FD, P-AUT and P-DET concentration ranges (1.5–5.4, 0–2.7 and 0.4–3.4 μmol g−1, respectively) were similar at all stations, and showed no obvious common trend of seasonal changes. P–Fe ranged from 1.9 to 11.9 μmol g−1 with the highest values at bay station and higher seasonal oscillations than other inorganic P forms. P-ORG ranged from 0.3 to 18.7 μmol g−1 with higher concentrations at stations of fine-sized sediments and showed increased concentrations in warm part of the year at all stations. Correlation between concentrations of P–Fe in the surface sediment layer and orthophosphate sediment-water interface concentration gradients at bay and channel stations indicated to P–Fe importance in the orthophosphate benthic flux. For the bay station, linkage between sediment P-ORG and chlorophyll a concentrations, primary production and microzooplankton abundance was established, indicating a 1 month delay of sediment response to production fluctuations in the water column.  相似文献   

17.
On the basic of selective extractions, loosely sorbed phosphorus (ADS-P) has been shown to constitute much of the total phosphorus in the P-rich near-surface sediments of Lake Søbygaard, Denmark. The concentrations of ADS-P are seasonally variable, ranging from 0.2 mg Pg?1 DW in the winter to more than 2 mg Pg?1 DW in the summer. The variations can be observed as deep as 10 cm into the sediment but are most pronounced in the upper few centimeters. During the summer, lake and pore water pH levels are very high, and photosynthetic activity causes elevation to pH 10–11 in the lake. Laboratory experiments demonstrated a strong association between ADS-P and high pore water pH. It is likely that Lake Søbygaard represents an extreme example of pH control on sediment/water phosphorus equilibria in which high concentrations of internal ADS-P contribute significantly to the total P load of the Lake.  相似文献   

18.
This paper documents the role of salt marsh algal mats in the productivity of a southern California tidal wetland. The productivity of the mats, which are composed of filamentous bluegreen and green algae and diatoms, varies both temporally and spatially in relation to tidal inundation and overstory vegetation. The estimates of net primary productivity (NPP) were highest under the canopy ofJaumea carnosa (Less.) Gray (341 g C m?2 yr?1) at low elevation. Elsewhere, NPP appeared to be limited by low light (276 g C m?2 yr?1 underSpartina foliosa Trin.) and desiccation (185 g C m?2 yr?1 underBatis martima L. and 253 g C m?2 yr?1 underMonanthochloe littoralis Engelm). Algal NPP was from 0.8 to 1.4 times that of the vascular plant overstory NPP. It is hypothesized that the arid environment of southern California and resulting hypersaline soils reduce vascular plant cover, which leads to high algal productivity.  相似文献   

19.
Temporal and spatial changes in the sediment properties of a mangrove ecosystem (Cochin, southwest coast India) are presented. The region was freshwater dominated during monsoon (June–September) and seawater dominated during other two seasons. The system remained eutrophic due to the high inputs of organic matter (OM) during most part of the year. The organic-rich sediments accumulated high amount of carbohydrates (22% of OM) and proteins (11% of OM) during non-monsoon months as compared to coastal environments. Principal component analysis showed that the biochemical properties are uniformly influenced by seasonal and spatial variations. Higher concentrations of sediment protein over carbohydrate indicate an efficient mineralization leading to the non-availability of aged OM in the system. The dominance of these labile components is generally indicative of the eutrophic condition of the system.  相似文献   

20.
Field experiments were conducted to examine spatial and temporal variation in chironomid (predominantlyTanypus clavatus) abundance, and their trophic relationship with benthic microalgae. High performance liquid chromatography (HPLC) analysis of chironomid gut pigments indicated that diatoms comprised the bulk of the microalgae ingested by chironomids.14C-feeding studies were used to obtain quantitative estimates of chironomid, copepod, ostracod, and nematode grazing on benthic microalgae. Daily consumption of standing microalgal biomass by chironomids ranged from 0.12% (January) to 125% (May), but was highly variable. There were no significant diel, temporal (over the scale of months), or spatial patterns in individual chironomid grazing rates. There was significant temporal variation in the proportion of microalgal biomass consumed by the total meiofaunal assemblage, and highest grazing impacts occurred in May, coincident with high abundances of chironomids, harpacticoid copepods, and ostracods. The grazing impact of chironomids was comparable to or greater than that of other known grazers of microalgae (copepods, ostracods). Functional-response experiments performed in the laboratory revealed that chironomid ingestion rates increased with increasing food availability over short (1 to 2 h) time scales. Field data did not indicate a functional response to food availability over longer (mo) time scales, possibly because of other environmental incluences. Gut residence time (determined using fluorescently labeled beads) changed with variable feeding rates, which were in turn a function of variable food availability. Chironomid larvae have the ability to consume significant fraction of the microphytobenthos in absolute terms, and relative to other meiofauna, indicating that they are an important component of the salt marsh food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号