首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   

2.
The Sungai Merbok estuary, in wet tropical Peninsular Malaysia, borders the Straits of Malacca. Tide, current, and salinity data are used to describe the salient hydrographic features of the mangrove-fringed system. The Sungai Merbok estuary is characterized by a 1.7 m semidiurnal tide with a 0.16 form number, peak currents of 1.3 m s?1, and mean freshwater discharge of 20 m3 s?1. The system is classified as 2a/2b estuary (Hansen and Rattray 1966) or 1a/1b during periods of low runoff. Gravitational circulation is highly variable (but coincides with the neap stratification) and vertical stratification varies from 10?2 to 1. The estuary displays a pronounced fortnightly neap-spring stratification-destratification cycle. The effective longitudinal dispersion coefficient is approximately 100 m2 s?1.  相似文献   

3.
Since 1991, Mississippi River water has been diverted at Caernarvon, Louisiana, into Breton Sound estuary. Breton Sound estuary encompasses 1100 km2 of fresh and brackish, rapidly subsiding wetlands. Nitrite + nitrate, total Kjeldahl nitrogen, ammonium, total phosphorus, total suspended sediments, and salinity concentrations were monitored at seven locations in Breton Sound from 1988 to 1994. Statistical analysis of the data indicated decreased total Kjeldahl nitrogen with associated decrease in total nitrogen, and decreased salinity concentrations in the estuary due to the diversion. Spring and summer water quality transects indicated rapid reduction of nitrite + nitrate and total suspended sediment concentration as diverted Mississippi River water entered the estuary, suggesting near complete assimilation of these constituents by the ecosystem. Loading rates of nitrite + nitrate (5.6–13.4 g m−2 yr−1), total nitrogen (8.9–23.4 g m−2 yr−1), and total phosphorus (0.9–2.0 g m−2 yr−1) were calculated along with removal efficiencies for these constituents (nitrite + nitrate 88–97%; total nitrogen 32–57%; total phosphorus 0–46%). The low impact of the diversion on water quality in the Breton Sound estuary, along with assimilation of TSS over a very short distance, suggests that more water may be introduced into the estuary without detrimental affects. This would be necessary if freshwater diversions are to be used to distribute nitrients and sediments into the lower reaches of the estuary, in an effort to compensate for relative sea-level rise, and reverse the current trend of rapid loss of wetlands in coastal Louisiana.  相似文献   

4.
The hydrography and circulation of the Chubut River were investigated under exceptionally low river discharge. The frontal zone formed by the entrance of the tide in the estuary may be observed as far as 4.5 km from the mouth, showing that the salt intrusion due to tidal effects reaches further inland than during normal river discharge. Based on the classification of Hansen and Rattray (1966), the estuary corresponds to Type 1 with some vertical stratification observed on the seaward side of the frontal zone. A lateral salinity gradient was found, which was not the result of Coriolis force. The general morphology of the estuary and the consequent secondary circulation due to meanders and interchannel bars may explain the lateral variation. Wind effect is a major component of the circulation and mixing of this shallow estuary.  相似文献   

5.
The Three Gorges Project (TGP) is a transcentury project that has aroused world attention. It is expected that the flow velocity and runoff of the Yangtze River will be changed after the project has been accomplished. Consequently, however, the ecological environment in the Yangtze River Basin, particularly in the estuary region, will be affected. Salinity intrusion into the Yangtze River estuary, in general, is mostly affected by the Yangtze River discharge and its external tidal level. This paper focuses on examining the influence of changes in runoff on salinity value. The question, to which should be paid attention is: how is the interaction between changes in runoff of the Yangtze River and salinity distribution in the Yangtze River estuary, China? In this research, a three-dimensional model has been used to identify the effects of runoff change on salinity distribution. The drawn conclusion is that the change of salinity is influenced by discharge variation. Positive and negative impacts of TGP would both turn up but in different period. In sum, TGP is in favor of restraining saltwater intrusion. Nevertheless a suitable method should be found to resolve its negative influences.  相似文献   

6.
Rao  A. D.  Dash  Sujata  Babu  S. V. 《Natural Hazards》2004,32(2):219-237
The Mahanadi River is one of the largest river systems in the east coast of Indiaand the estuary drains and communicates with the Bay of Bengal. The seasonallyvarying fresh water river discharge and the intrusion of salt water from the baydepend on the flow associated with the semi-diurnal component of the astronomicaltide (dominated by M2 component). A numerical model has been developed tosimulate and study the salinity structure, velocity profile, flow and circulation patternand have been compared with the observed data. A reasonably good agreement isnoticed between the model simulations and the observations. The model result hasbeen utilised to compute sediment load transport to the estuary channel over a tidalcycle as well as on a monthly time scale. The sediment load transport owing to monthlyclimatological rainfall is discussed and it is inferred that a dynamic equilibrium existson a long-term over good/bad monsoons.  相似文献   

7.
The Swan River estuary, Western Australia, has undergone substantial hydrological modifications since pre-European settlement. Land clearing has increased discharge from some major tributaries roughly 5-fold, while weirs and reservoirs for water supply have mitigated this increase and reduced the duration of discharge to the estuary. Nutrient loads have increased disproportionately with flow and are now approximately 20-times higher than pre-European levels. We explore the individual and collective impacts of these hydrological changes on the Swan River estuary using a coupled hydrodynamic-ecological numerical model. The simulation results indicate that despite increased hydraulic flushing and reduced residence times, increases in nutrient loads are the dominant perturbation producing increases in the incidence and peak biomass of blooms of both estuarine and freshwater phytoplankton. Changes in salinity associated with altered seasonal freshwater discharge have a limited impact on phytoplankton dynamics.  相似文献   

8.
In September 1984, the freshwater input to the Eastmain River (James Bay, Canada) was increased by a factor of 50 over a 6-d period during a controlled reservoir discharge. Changes to the current, salinity and turbidity regimes were monitored during the peak runoff. Estuarine salinity values fell rapidly with increasing mean flow, as did the amplitude of the semi-diurnal tidal currents. A large increase in bottom shear stress dispersed the settled suspension layer into the water column, raising concentrations of suspended matter in the estuary by a factor of 4 in 3 d. The peak values exceeded 150 mg I?1. This led to erosion of the river silt deposits, with the export of an estimated 6 × 104 metric tons of sediments. After the reduction of discharge, current values returned to their normal range within a day, whereas upstream salinity intrusion occurred at a slower rate. Horizontal diffusivities of about 100 m2 s?1 were required to match the observed lag.  相似文献   

9.
A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86?×?108 to 4.33?×?108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy’s Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s?1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3–9 m3 s?1) and Darcy’s Law (about 9 m3 s?1). A groundwater flux of 9 m3 s?1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills.  相似文献   

10.
A causeway which had restricted tidal flow in a portion of the Sheepscot River estuary was removed late in 1974. Flowmeter data from moored plankton nets fished over full tidal cycles, and salinity observations made in conjunction with the net sets, were used to evaluate the effects of causeway removal on circulation in the estuary. Tidal flows in the main channel increased by almost 50%. This increase was accompanied by substantial decreases in salinity stratification and in the strength of the gravitational circulation.  相似文献   

11.
 The Mfolozi Estuary on the KwaZulu-Natal coast of South Africa is the most turbid estuary in Natal due to poor catchment management, leading to large quantities of suspended particulate matter (SPM) entering the estuary from the Mfolozi River. This paper quantities some of the solute and sediment dynamics in the Mfolozi Estuary where the main documented environmental concern is the periodic input of SPM from the Mfolozi Estuary to the St. Lucia system, causing reduction of light penetration and endangering biological productivity in this important nature reserve. Synoptic water level results have allowed reach mean bed shear stresses and velocities to be calculated for an observed neap tidal cycle. Results indicate that ebb velocities dominate the sediment transport processes in the estuary when fluvial input in the Mfolozi River is of the order of 15–20 m3 s–1. Observed and predicted flood tide velocities are too low (<0.35 m s–1) to suspend and transport significant amounts of SPM. Observed results indicate that although the SPM load entering the estuary is dominantly from the Mfolozi River, the Msunduzi River flow plays a major role in the composition of the estuary's salinity and velocity fields. It is calculated that the Mfolozi Estuary would fill with sediment in 1.3 years if it was cut off from the sea. The major fluvial flood events help maintain the estuary by periodically pushing sediment seawards (spit progrades seawards 5 m yr–1) and scouring and maintaining the main flow channel in the estuary. During low fluvial flow conditions, tidal flow velocities will become the dominant control on sediment transport in the estuary. Interchange of SPM between the St. Lucia and Mfolozi estuaries under present conditions is complicated by the strong transverse velocity shear between the two systems at their combined mouth. This is creating a salinity-maintained axial convergence front that suppresses mixing of solutes and SPM between the systems for up to 10 h of the tidal cycle during observed conditions. Received: 22 May 1995 · Accepted: 31 July 1995  相似文献   

12.
Monthly growth of the fouling community at eight test panel sites in the Loxahatchee River Estuary was related to salinity and temperature. Growth was lowest in January 1981 (averaging 23 g per m2, dry weight), and increased during spring and early summer with increasing water temperature. Maximum growth occurred during early or midsummer at upstream locations, before river or canal discharge substantially reduced salinity, and in late summer at downstream locations. Growth was greatest at salinities slightly less than that of seawater and decreased at salinities less than about 10‰. Growth was suppressed throughout the estuary in August 1981, probably because of the sudden decrease in temperature and salinity, and perhaps the increase in physical scouring, caused by runoff from Tropical Storm Dennis. Large loads of nutrients transported to the estuary from storm runoff, however, may have subsequently stimulated growth, which increased in September 1981 to the maximum for the year (averaging 683 g per m2, dry weight).  相似文献   

13.
Physical and chemical parameters were measured in a subtropical estuary with a blind river source in southwest Florida, United States, to assess seasonal discharge of overland flow and groundwater in hydrologic mixing. Water temperature, pH, salinity, alkalinity, dissolved inorganic carbon (DIC), δ18O, and δ13CDIC varied significantly due to seasonal rainfall and climate. Axial distribution of the physical and chemical parameters constrained by tidal conditions during sampling showed that river water at low tide was a mixture of freshwater from overland flow and saline ground-water in the wet season and mostly saline groundwater in the dry season. Relationships between salinity and temperature, δ18O, and DIC for both the dry and wet seasons showed that DIC was most sensitive to seawater mixing in the estuary as DIC changed in concentration between values measured in river water at the tidal front to the most seaward station. A salinity-δ13CDIC model was able to describe seawater mixing in the estuary for the wet season but not for the dry season because river water salinity was higher than that of seawater and the salinity gradient between seawater and river water was small. A DIC-δ13CDIC mixing model was able to describe mixing of carbon from sheet flow and river water at low tide, and river water and seawater at high tide for both wet and dry seasons. The DIC-δ13CDIC model was able to predict the seawater end member DIC for the wet season. The model was not able to predict the seawater end member DIC for the dry season data due to secondary physical and biogeochemical processes that altered estuarine DIC prior to mixing with seawater. The results of this study suggest that DIC and δ13CDIC can provide additional insights into mixing of river water and seawater in estuaries during periods where small salinity gradients between river water and seawater and higher river water salinities preclude the use of salinity-carbon models.  相似文献   

14.
Construction of the Farakka barrage on the Ganga River in April 1975 to augment water supply to the Calcutta port has brought about a significant increase in freshwater discharge in its distributary, the Hoogly estuary. This has naturally resulted in major changes in the ecology of this estuary, causing modifications in the structure of its fishery resources, fishing pattern, and fish production. This paper presents observations on salinity, plankton, bottom biota, fishery resource, and fish production of different zones of the Hooghly estuary during the period 1982–1992. Comparison with similar studies made before and immediately after commissioning of the Farakka barrage (1975–1977) has revealed that the increased freshwater discharge has resulted in considerable decrease in salinity throughout the estuary. The freshwater zone now extends toward the mouth of the estuary. The true estuarine zone has moved seaward and the marine zone has been restricted to the area near the mouth of the estuary. This has effected major changes in plankton dynamics, sharp decline in the fishery of marine and neritic species in the upper estuary, caused a significant increase in catch ofTenualosa ilisha and an over twofold increase in the average annual fish landings from the estuary as a whole. New zonations have been proposed based on the presently, observed salinity values, which are the most significant factor in determining the fishery of any estuary. An interdisciplinary study of the ecology of the new zones is needed to establish their correct biological characteristics.  相似文献   

15.
A tidally averaged model of estuarine dynamics is used to estimate sediment transport in the Hudson River estuary over the period 1918 to 2005. In long-term and seasonal means, along-channel gradients in sediment flux depend on the estuarine salinity gradient and along-channel depth profile. Lateral depth variation across the estuary affects the near-bottom baroclinic circulation and consequently the direction of net sediment flux, with generally up-estuary transport in the channel and down-estuary transport on the shoals. Sediment transport capacity in the lower estuary depends largely on river discharge, but is modified by the timing of discharge events with respect to the spring–neap cycle and subtidal fluctuations in sea level. Sediment transport capacity also depends on the duration of high-discharge events relative to the estuarine response time, a factor that varies seasonally with discharge and estuarine length. Sediment fluxes are calculated with the assumption that over long periods, the system approaches morphological equilibrium and sediment accumulation equals sea level rise. The inferred across- and along-channel distributions of sediment erodibility correspond with observations of bed properties. Equilibrium is assumed at long time scales, but at annual to decadal time scales the estuary can develop an excess or deficit of sediment relative to equilibrium. On average, sediment accumulates in the estuary during low- and high-discharge periods and is exported during moderate discharge. During high-discharge periods, maximum export coincides with maximum sediment supply from the watershed, but the nearly cubic discharge dependence of fluvial sediment supply overwhelms the roughly linear increase in estuarine transport capacity. Consequently, sediment accumulates in the estuary during the highest flow conditions. Uncertainty remains in the model, particularly with sediment properties and boundary conditions, but the results clearly indicate variability in the sediment mass balance over long time scales due to discharge events.  相似文献   

16.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   

17.
钱塘江河口为强涌潮、高含沙量、河床冲淤剧烈的河口,其盐度输移时空变化受河床冲淤的反馈影响十分显著。建立了考虑河床冲淤变化的一维盐度动床数学模型,耦合求解水沙运动、河床冲淤及盐度输移过程,数值计算方法采用守恒性较好的有限体积法。验证结果表明:河床冲淤对氯度的影响非常显著,动床模型的结果与实测基本吻合,在长历时盐度预报中采用动床模型是必要的。应用该模型分析了钱塘江河口咸水入侵对上游建库、治江缩窄工程等人类活动的响应,探讨了杭州城市供水水源保证率。结果表明,新安江水库、河口治理缩窄工程对改善河口淡水资源利用、保障杭州市供水安全显著;供水保证率要达95%以上,需采取上游水库泄水调度和新建备用水库等措施。  相似文献   

18.
The long-term response of circulation processes to external forcing has been quantified for the Columbia River estuary using in situ data from an existing coastal observatory. Circulation patterns were determined from four Acoustic Doppler Profilers (ADP) and several conductivity–temperature sensors placed in the two main channels. Because of the very strong river discharge, baroclinic processes play a crucial role in the circulation dynamics, and the interaction of the tidal and subtidal baroclinic pressure gradients plays a major role in structuring the velocity field. The input of river flow and the resulting low-frequency flow dynamics in the two channels are quite distinct. Current and salinity data were analyzed on two time scales—subtidal (or residual) and tidal (both diurnal and semidiurnal components). The residual currents in both channels usually showed a classical two-layer baroclinic circulation system with inflow at the bottom and outflow near the surface. However, this two-layer system is transient and breaks down under strong discharge and tidal conditions because of enhanced vertical mixing. Influence of shelf winds on estuarine processes was also observed via the interactions with upwelling and downwelling processes and coastal plume transport. The transient nature of residual inflow affects the long-term transport characteristics of the estuary. Effects of vertical mixing could also be seen at the tidal time scale. Tidal velocities were separated into their diurnal and semidiurnal components using continuous wavelet transforms to account for the nonstationary nature of velocity amplitudes. The vertical structure of velocity amplitudes were considerably altered by baroclinic gradients. This was particularly true for the diurnal components, where tidal asymmetry led to stronger tidal velocities near the bottom.  相似文献   

19.
Gravitational circulation of the Delaware Estuary is dominated by a single river, the Delaware River. The seasonal variation in river discharge is large. Consequently, the water column varies between vertically homogenous conditions found during most of the year and strongly stratified conditions found during the high flow of the spring freshet. Both the variation in river discharge and the extent of stratification affect chemical distributions and biological processes in the estuary. With a simple advection-diffusion model, we show that the apparent nonconservative behavior of nitrate in the Delaware Estuary can result from varying endmember concentration and varying river discharge. In addition, we illustrate the relationship between water column stratification, phytoplankton production, and concurrent bacterial activity. Finally, as an indirect chemical response to phytoplankton growth during high river discharge, we show strongly nonconservative patterns for ammonium, phosphate, and silicate in the estuary.  相似文献   

20.
The Environmental Fluid Dynamic Code, an estuarine and coastal ocean circulation model, is used to simulate the distribution of the salinity plume in the vicinity of the mouth of the Cape Fear River Estuary, North Carolina. The individual and coupled effects of the astronomical tides, river discharge, and atmospheric winds on the spatial and temporal distributions of coastal water levels and the salinity plume were investigated. These modeled effects were compared with water level observations made by the National Oceanic and Atmospheric Administration and salinity surveys conducted by the Coastal Ocean Research and Monitoring Program. Model results and observations of salinity distributions and coastal water level showed good agreement. The simulations indicate that strong winds tend to reduce the surface plume size and distort the bulge shape near the estuary mouth due to enhanced wind-induced surface mixing. Under normal discharge conditions, tides, and light winds, the southward outwelling plume veers west. Relatively moderate winds can mechanically reverse the flow direction of the plume. Under conditions of weak to moderate winds the water column does not mix vertically to the bottom, while in strong wind cases the plume becomes vertically well mixed. Under conditions of high river discharge the plume increases in size and reaches the bottom. Vertical mixing induced by strong spring tides can also enable the plume to reach the bottom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号