首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文采用RAMS(Regional Atmospheric Modeling System)模式模拟研究了没有背景风的情况下,土壤湿度非均匀分布的长度尺度分别为40km逐渐减小到2km时,地表通量的分布和大气边界层的响应.运用二维傅里叶变换,分析了地表通量、中尺度脉动量和中尺度通量的二维幅度谱分布,初步探讨大尺度模式中非均匀地表条件下的边界层参数化问题.分析结果显示各试验的地表水、热通量和中尺度脉动量的幅度谱的极大值都出现在与各自非均匀尺度相对应的波数处,当有不同尺度的非均匀斑块共存时,最大的非均匀尺度占主导.但是中尺度水、热通量的结果有所不同,除了在与各自非均匀尺度相对应的波数处有峰值之外,在其他波数还有多个峰值.这些结果表明地表水、热通量的空间分布尺度与非均匀尺度之间存在较好的对应关系,而中尺度水、热通量与非均匀尺度的关系并不明显,说明地表水、热通量的网格平均值的代表性较好,但是不能反映次网格脉动的影响,而中尺度通量的网格平均值的代表性较差.  相似文献   

2.
Partial analysis is applied to the problem of predicting the moisture fluxes of infiltraton and evaporation at land surfaces. The discussion covers the widely different scales of the soil particle, a soil pedon, a field, a basin and a biome. It is suggested that simplified models can be used at these different scales to provide bounding solutions to the integrated behaviour of land surface fluxes of interest in linking hydrologic models and general circulation climate models.  相似文献   

3.
Accurate coarse-scale soil moisture information is required for robust validation of current- and next-generation soil moisture products derived from spaceborne radiometers. Due to large amounts of land surface and rainfall heterogeneity, such information is difficult to obtain from existing ground-based networks of soil moisture sensors. Using ground-based field data collected during the Soil Moisture Experiment in 2002 (SMEX02), the potential for using distributed modeling predictions of the land surface as an upscaling tool for field-scale soil moisture observations is examined. Results demonstrate that distributed models are capable of accurately capturing a significant level of field-scale soil moisture heterogeneity observed during SMEX02. A simple soil moisture upscaling strategy based on the merger of ground-based observations with modeling predictions is developed and shown to be more robust during SMEX02 than upscaling approaches that utilize either field-scale ground observations or model predictions in isolation.  相似文献   

4.
H.K. McMillan 《水文研究》2012,26(18):2838-2844
This paper uses soil moisture data from 17 recording sensors within the 50 km2 Mahurangi catchment in New Zealand to determine how measured variability in soil moisture affects simulations of drainage in a typical lumped conceptual model. The data show that variability smoothes the simulated field capacity threshold such that a proportion of the catchment contributes to drainage even when mean soil moisture content is well below field capacity. Spatial variability in soil moisture controls by extension the catchment drainage behaviour: the resulting smoothed shape of the catchment‐scale drainage function is demonstrated and is also determined theoretically under simplifying assumptions. The smoothing effect increases the total simulated discharge by 130%. The analysis explains previous findings that different drainage equations are required at point scale versus catchment scale in the Mahurangi. The spatial variability and hence the emergent drainage behaviour are found to vary with season, suggesting that time‐varying parameters would be warranted to simulate drainage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moisture profile by assimilating surface soil moisture observations. The Arou observation station, located in the upper reaches of the Heihe River in northwestern China, was selected to test the proposed method. Three numeric experiments were designed and performed to analyze the influence of uncertainties in model parameters, atmospheric forcing, and the model's physical mechanics on soil moisture estimates. Several assimilation schemes based on the ensemble Kalman filter(En KF), ensemble Kalman smoother(En KS), and dual En KF(DEn KF) were also compared in this study. The results demonstrate that soil moisture and soil properties can be simultaneously estimated by state-parameter estimation methods, which can provide more accurate estimation of soil moisture than traditional filter methods such as En KF and En KS. The estimation accuracy of the model parameters decreased with increasing error sources. DEn KS outperformed DEn KF in estimating soil moisture in most cases, especially where few observations were available. This study demonstrates that the DEn KS approach is a useful and practical way to improve soil moisture estimation.  相似文献   

6.
Soil moisture is one of the few directly observable hydrological variables that has an important role in water and energy budgets necessary for climate studies. At the present time there is no practical approach to measuring and monitoring soil moisture at the frequency and scale necessary for these large scale analyses. Current and developing satellite systems have not addressed this important question. A solution utilizing passive microwave remote sensing is presented here and an optimum system, soil moisture estimation algorithms and a microwave simulation model are described.  相似文献   

7.
Many researchers have examined the impact of detailed soil spatial information on hydrological modelling due to the fact that such information serves as important input to hydrological modelling, yet is difficult and expensive to obtain. Most research has focused on the effects at single scales; however, the effects in the context of spatial aggregation across different scales are largely missing. This paper examines such effects by comparing the simulated runoffs across scales from watershed models based on two different levels of soil spatial information: the 10‐m‐resolution soil data derived from the Soil‐Land Inference Model (SoLIM) and the 1:24000 scale Soil Survey Geographic (SSURGO) database in the United States. The study was conducted at three different spatial scales: two at different watershed size levels (referred to as full watershed and sub‐basin, respectively) and one at the model minimum simulation unit level. A fully distributed hydrologic model (WetSpa) and a semi‐distributed model (SWAT) were used to assess the effects. The results show that at the minimum simulation unit level the differences in simulated runoff are large, but the differences gradually decrease as the spatial scale of the simulation units increases. For sub‐basins larger than 10 km2 in the study area, stream flows simulated by spatially detailed SoLIM soil data do not significantly vary from those by SSURGO. The effects of spatial scale are shown to correlate with aggregation effect of the watershed routing process. The unique findings of this paper provide an important and unified perspective on the different views reported in the literature concerning how spatial detail of soil data affects watershed modelling. Different views result from different scales at which those studies were conducted. In addition, the findings offer a potentially useful basis for selecting details of soil spatial information appropriate for watershed modelling at a given scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Land surface soil moisture (SSM) is an important variable for hydrological, ecological, and meteorological applications. A multi‐linear model has recently been proposed to determine the SSM content from the combined diurnal evolution of both land surface temperature (LST) and net surface shortwave radiation (NSSR) with the parameters TN (the LST mid‐morning rising rate divided by the NSSR rising rate during the same period) and td (the time of daily maximum temperature). However, in addition to the problem that all the coefficients of the multi‐linear model depend on the atmospheric conditions, the model also suffers from the problems of the nonlinearity of TN as a function of the SSM content and the uncertainty of determining the td from the diurnal evolution of the LST. To address these problems, a modified multi‐linear model was developed using the logarithm of TN and normalizing td by the mid‐morning temperature difference instead of using the TN and td. Except for the constant term, the coefficients of all other variables in the modified multi‐linear model proved to be independent of the atmospheric conditions. Using the relevant simulation data, results from the modified multi‐linear model show that the SSM content can be determined with a root mean square error (RMSE) of 0.030m3/m3, provided that the constant term is known or estimated day to day. The validation of the model was conducted using the field measurements at the Langfang site in 2008 in China. A higher correlation is achieved (coefficient of determination: R2 = 0.624, RMSE = 0.107m3/m3) between the measured SSM content and the SSM content estimated using the modified multi‐linear model with the coefficients determined from the simulation data. Another experiment is also conducted to estimate the SSM content using the modified model with the constant term calibrated each day by one‐spot measurements at the site. The estimation result has a relatively larger error (RMSE = 0.125m3/m3). Additionally, the uncertainty of the determination of the coefficients is analysed using the field measurements, and the results indicate that the SSM content obtained using the modified model accurately characterizes the surface soil moisture condition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Field observations of shoreline conditions at Hyrum Reservoir, Utah, were conducted during the summers of 1991 to 1993. A process of bluff retreat is described for a multiple-layered bluff environment of sand and clay layers. Failure is initiated by wetting and drying of clay sediments, which produces horizontal cracks within bluff material. These cracks appear to penetrate to a depth of approximately 100-150 mm before initiating vertical cracking in the sediments. The vertical cracks are propagated by continued drying of the surface sediment, ultimately leading to failure of the bluff material. The physical dimensions of sediment blocks succumbing to this mechanism range from a few hundred millimetres up to 3 m on a side, with a depth of approximately 100-150 mm. The mechanism described here appears to operate optimally when the supply of subsurface moisture is abundant and nearly continuous throughout the spring and early summer. Reservoir draw-down, large capillary fringe effects in the bluff and periodic wetting from upslope undrained hollows are the dominant moisture controls at this site. Moisture delivery to the face is strongly influenced by anisotropy of saturated hydraulic conductivity in the alternating clay and sand layers and related differences in sediment texture.  相似文献   

10.
This paper examines the potential for improving Soil and Water Assessment Tool (SWAT) hydrologic predictions of root-zone soil moisture, evapotranspiration, and stream flow within the 341 km2 Cobb Creek Watershed in southwestern Oklahoma through the assimilation of surface soil moisture observations using an Ensemble Kalman filter (EnKF). In a series of synthetic twin experiments assimilating surface soil moisture is shown to effectively update SWAT upper-layer soil moisture predictions and provide moderate improvement to lower layer soil moisture and evapotranspiration estimates. However, insufficient SWAT-predicted vertical coupling results in limited updating of deep soil moisture, regardless of the SWAT parameterization chosen for root-water extraction. Likewise, a real data assimilation experiment using ground-based soil moisture observations has only limited success in updating upper-layer soil moisture and is generally unsuccessful in enhancing SWAT stream flow predictions. Comparisons against ground-based observations suggest that SWAT significantly under-predicts the magnitude of vertical soil water coupling at the site, and this lack of coupling impedes the ability of the EnKF to effectively update deep soil moisture, groundwater flow and surface runoff. The failed attempt to improve stream flow prediction is also attributed to the inability of the EnKF to correct for existing biases in SWAT-predicted stream flow components.  相似文献   

11.
Surface soil heat flux is a component of surface energy budget and its estimation is needed in land-atmosphere interaction studies. This paper develops a new simple method to estimate soil heat flux from soil temperature and moisture observations. It gives soil temperature profile with the thermal diffusion equation and, then, adjusts the temperature profile with differences between observed and computed soil temperatures. The soil flux is obtained through integrating the soil temperature profile. Compared with previous methods, the new method does not require accurate thermal conductivity. Case studies based on observations, synthetic data, and sensitivity analyses show that the new method is preferable and the results obtained with it are not sensitive to the availability of temperature data in the topsoil. In addition, we pointed out that the soil heat flux measured with a heat-plate can be quite erroneous in magnitude though its phase is accurate.  相似文献   

12.
The accurate estimation of profile soil moisture is usually difficult due to the associated costs, strong spatiotemporal variability, and nonlinear relationship between surface and profile moisture. Here, we used data sets from the Soil and Climate Analysis Network to test how reliably observation operators developed based on the cumulative distribution function matching method can predict profile soil moisture from surface measurements. We first analysed how temporal resolution (hourly, daily, and weekly) and data length (half year, 1 year, 2 years, and 4 years) affected the performance of observation operators. The results showed that temporal resolution had a negligible influence on the performance of observation operators. However, a leave‐one‐year‐out cross‐validation showed that data length affected the performance of observation operators; a 2‐year interval was identified as the most suitable duration due to its low uncertainty in prediction accuracy. The robustness of the observation operators was then tested in three primary climates (humid continental, humid subtropical, and semiarid) of the continental United States, with the exponential filter employed as an independent method. The results indicated that observation operators reliably predicted profile soil moisture for most of the tested stations and performed almost equally well as the exponential filter method. The presented results verified the feasibility of using the cumulative distribution function matching method to predict profile soil moisture from surface measurements.  相似文献   

13.
Remotely sensed (RS) data can add value to a hydrological model calibration. Among this, RS soil moisture (SM) data have mostly been assimilated into conceptual hydrological models using various transformed variable or indices. In this study, raw RS surface SM is used as a calibration variable in the Soil and Water Assessment Tool model. This means the SM values were not transformed into another variable (e.g., soil water index and root zone SM index). Using a nested catchment, calibration based only on RS SM and optimizing model parameters sensitive to SM using particle swarm optimization improved variations in streamflow predictions at some of the gauging stations compared to the uncalibrated model. This highlighted part of the catchments where the SM signal directly influenced the flow distribution. Additionally, highlighted high and low flow signals were mostly influenced. The seasonal breakdown indicates that the SM signal is more useful for calibrating in wetter seasons and in areas with higher variations in elevation. The results identified that calibration only on RS SM improved the general rainfall–runoff response simulation by introducing delays but cannot correct the overall routing effect. Furthermore, catchment characteristics (e.g., land use, elevation, soil types, and precipitation) regulating SM variation in different seasons highlighted by the model calibration are identified. This provides further opportunities to improve model parameterization.  相似文献   

14.
This paper presents some statistical evaluations of the surface energy and soil water balance fluxes, for a prairie-type canopy, using the Earth model with a double-reservoir system for the management of the soil water reserve and the regulation of actual evapotranspiration. The mean values of these fluxes are estimated from energy and water balance simulations done on a 30-year climatic reference period (1951-1980). From values of these fluxes calculated for each meteorological synoptic station, mappings of net radiation, actual evapotranspiration, drainage and conduction fluxes have been made over French territory. Lastly, a few conclusions pertaining to the spatial variability of fluxes and to the partition of rainfall between run-off and drainage on the one hand and replenishment of the soil water reserve on the other hand are drawn from these preliminary results.  相似文献   

15.
Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling and inversion of microwave emission from land surfaces is the surface roughness. In this study, an L-band parametric emission model for exponentially correlated surfaces was developed and implemented in a soil moisture retrieval algorithm. The approach was based on the parameterization of an effective roughness parameter of Hp in relation with the geometric roughness variables (root mean square height s and correlation length l) and incidence angle. The parameterization was developed based on a large set of simulations using an analytical approach incorporated in the advanced integral equation model (AIEM) over a wide range of geophysical properties. It was found that the effective roughness parameter decreases as surface roughness increases, but increases as incidence angle increases. In contrast to previous research, Hp was found to be expressed as a function of a defined slope parameter m = s2/l, and coefficients of the function could be well described by a quadratic equation. The parametric model was then tested with L-band satellite data in soil moisture retrieval algorithm over the Little Washita watershed, which resulted in an unbiased root mean square error of about 0.03 m3/m3 and 0.04 m3/m3 for ascending and descending orbits, respectively.  相似文献   

16.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   

17.
Surface soil moisture (SSM) is a critical variable for understanding water and energy flux between the atmosphere and the Earth's surface. An easy to apply algorithm for deriving SSM time series that primarily uses temporal parameters derived from simulated and in situ datasets has recently been reported. This algorithm must be assessed for different biophysical and atmospheric conditions by using actual geostationary satellite images. In this study, two currently available coarse‐scale SSM datasets (microwave and reanalysis product) and aggregated in situ SSM measurements were implemented to calibrate the time‐invariable coefficients of the SSM retrieval algorithm for conditions in which conventional observations are rare. These coefficients were subsequently used to obtain SSM time series directly from Meteosat Second Generation (MSG) images over the study area of a well‐organized soil moisture network named REMEDHUS in Spain. The results show a high degree of consistency between the estimated and actual SSM time series values when using the three SSM dataset‐calibrated time‐invariable coefficients to retrieve SSM, with coefficients of determination (R2) varying from 0.304 to 0.534 and root mean square errors ranging from 0.020 m3/m3 to 0.029 m3/m3. Further evaluation with different land use types results in acceptable debiased root mean square errors between 0.021 m3/m3 and 0.048 m3/m3 when comparing the estimated MSG pixel‐scale SSM with in situ measurements. These results indicate that the investigated method is practical for deriving time‐invariable coefficients when using publicly accessed coarse‐scale SSM datasets, which is beneficial for generating continuous SSM dataset at the MSG pixel scale.  相似文献   

18.
This paper presents the effects of soil layering on the characteristics of basin-edge induced surface waves and associated strain and aggravation factor. The simulated results revealed surface wave generation near the basin-edge. The first mode of induced Love wave was obtained in models having increasing velocity with depth and a large impedance contrast between the soil layers. Amplitude amplification or de-amplification of body waves was proportional to the impedance contrast between the soil layers. The average aggravation factor was inversely proportional to the impedance contrast between the soil layers in case of increasingvelocity models and proportional in case of decreasing-velocity basinedge models. On the other hand, the maximum strain was inversely proportional to the impedance contrast between the soil layers in both cases. On the average, strain was greater in case of increasing-velocity models but the average aggravation factor was greater in case of decreasingvelocity models.  相似文献   

19.
The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation. The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data as- similation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in considera- tion of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process, while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heteroge- neity and soil water thawing and freezing. With the improvement of soil moisture simulation, the soil temperature-simulated precision can be also improved to some extent.  相似文献   

20.
The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, typical measurement depths of microwave-based soil moisture retrievals are generally considered too shallow (top 2–5 cm of the soil column) for many important water cycle and agricultural applications. Recent work has demonstrated that thermal remote sensing estimates of surface radiometric temperature provide a complementary source of land surface information that can be used to define a robust proxy for root-zone (top 1 m of the soil column) soil moisture availability. In this analysis, we examine the potential benefits of simultaneously assimilating both microwave-based surface soil moisture retrievals and thermal infrared-based root-zone soil moisture estimates into a soil water balance model using a series of synthetic twin data assimilation experiments conducted at the USDA Optimizing Production Inputs for Economic and Environmental Enhancements (OPE3) site. Results from these experiments illustrate that, relative to a baseline case of assimilating only surface soil moisture retrievals, the assimilation of both root- and surface-zone soil moisture estimates reduces the root-mean-square difference between estimated and true root-zone soil moisture by 50% to 35% (assuming instantaneous root-zone soil moisture retrievals are obtained at an accuracy of between 0.020 and 0.030 m3 m−3). Most significantly, improvements in root-zone soil moisture accuracy are seen even for cases in which root-zone soil moisture retrievals are assumed to be relatively inaccurate (i.e. retrievals errors of up to 0.070 m3 m−3) or limited to only very sparse sampling (i.e. one instantaneous measurement every eight days). Preliminary real data results demonstrate a clear increase in the R2 correlation coefficient with ground-based root-zone observations (from 0.51 to 0.73) upon assimilation of actual surface soil moisture and tower-based thermal infrared temperature observations made at the OPE3 study site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号