首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beckers  Jacques M.  Leon  Ed  Mason  Jim  Wilkins  Larry 《Solar physics》1997,176(1):23-36
Since 1993 it is known that there is a good correlation between the scintillation in the solar irradiance and solar image quality (Seykora, 1993). This effect is now being used in a number of experiments to evaluate solar image quality and to measure site seeing. In this paper we explore further the calibration of this scintillation (I) in terms of the Fried parameter (r0) taking into account variations in the refractive index structure constant C N 2 with height (h), zenith distance () dependence and the effects of wind velocities. A variant in the scintillometer setup is proposed which decreases sharply the dependance on C N 2 , , and the wind velocities. It uses an array of scintillometers. The same array can be used to measure theC N 2 profile with height. Some preliminary results of the calibration of current NSO site survey measurements are presented.  相似文献   

2.
In this empirical study, we compare high-resolution observations obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO) in 2005 and with the Dunn Solar Telescope (DST) at the National Solar Observatory/Sacramento Peak (NSO/SP) in 2006. We measure the correction of the high-order adaptive optics (AO) systems across the field of view (FOV) using the spectral ratio technique, which is commonly employed in speckle masking imaging, and differential image motion measurements. The AO correction is typically much larger (10′′ to 25′′) than the isoplanatic angle and can be described by a radially symmetric function with a central core and extended wings. The full-width at half-maximum (FWHM) of the core represents a measure of the AO correction. The average FWHM values for BBSO and NSO/SP are 23.5′′ and 18.2′′, respectively. The extended wings of the function show that the AO systems still contribute to an improved speckle reconstruction at the periphery of the 80′′×80′′ FOV. The major differences in the level of AO correction between BBSO and NSO/SP can be explained by different contributions of ground-layer- and free-atmosphere-dominated seeing, as well as different FOVs of the wavefront sensors. In addition, we find an anisotropic spectral ratio in sunspot penumbrae caused by the quasi-one-dimensional nature of penumbral filaments, which introduces a significant error in the estimation of the Fourier amplitudes during the image restoration process.  相似文献   

3.
介绍了云台太阳光谱望远镜光栅鬼线强度测量方法。给出了2 级光谱罗兰鬼线强度的初步测量结果, 为母线强度的0 .049 % 。结果表明光栅的质量优良, 鬼线对光谱测量的影响非常小, 一般情况下在光谱资料处理中可以不必考虑鬼线强度的改正  相似文献   

4.
Starting November 1999 we are carrying out simultaneous seeing observations with the Solar Differential Image Motion Monitor (S-DIMM) at the Fuxian Lake station of the Yunnan Observatory and a solar scintillometer of the type used in the recent site survey by one of us (Beckers et al., 1997). The purpose was to compare the two methods of assessing the daytime atmospheric seeing for a lake site. We report here the first results of this comparison. We find that the relation between the seeing as measured by the S-DIMM (the Fried parameter r 0) and the scintillation in the solar irradiance (I) differs greatly from the relation found by Seykora (1993) for NSO/Sac Peak. We conclude that the I measurements give a good indication for the amount of near-Earth seeing but that they are a poor proxy for the total atmospheric seeing. We interpret the simultaneous (r 0, I) observations in terms of an atmospheric seeing model and find good quantitative agreement with a model in which a fraction () of the seeing originated near the Earth (ground or water) and the rest (1–) originates at higher layers. For lake sites is small all day and the seeing is determined primarily by the refractive index variations at higher atmospheric layers. For land sites is small in the early morning but rapidly increases as the day progresses, near-Earth seeing dominating there most of the time.  相似文献   

5.
Knowledge of solar spectral irradiance (SSI) is important in determining the impact of solar variability on climate. Observations of UV SSI have been made by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmosphere Research Satellite (UARS), the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE), and the Solar Irradiance Monitor (SIM), both on the Solar Radiation and Climate Experiment (SORCE) satellite. Measurements by SUSIM and SORCE overlapped from 2003 to 2005. SUSIM and SORCE observations represent ~?20 years of absolute UV SSI. Unfortunately, significant differences exist between these two data sets. In particular, changes in SORCE UV SSI measurements, gathered at moderate and minimum solar activity, are a factor of two greater than the changes in SUSIM observations over the entire solar cycle. In addition, SORCE UV SSI have a substantially different relationship with the Mg ii index than did earlier UV SSI observations. Acceptance of these new SORCE results impose significant changes on our understanding of UV SSI variation. Alternatively, these differences in UV SSI observations indicate that some or all of these instruments have changes in instrument responsivity that are not fully accounted for by the current calibration. In this study, we compare UV SSI changes from SUSIM with those from SIM and SOLSTICE. The primary results are that (1) long-term observations by SUSIM and SORCE generally do not agree during the overlap period (2003?–?2005), (2) SUSIM observations during this overlap period are consistent with an SSI model based on Mg ii and early SUSIM SSI, and (3) when comparing the spectral irradiance for times of similar solar activity on either side of solar minimum, SUSIM observations show slight differences while the SORCE observations show variations that increase with time between spectra. Based on this work, we conclude that the instrument responsivity for SOLSTICE and SIM need to be reevaluated before these results can be used for climate-modeling studies.  相似文献   

6.
7.
In this article I describe a site survey facility, which measures the signals of the solar equivalent of a Differential Image Motion Monitor (S-DIMM) and of a six element linear array of solar scintillometers. Combining the S-DIMM r o andscintillometer I observations allows the determination of the fractions of the seeing in the free atmosphere and in the ground/lake layer. From the scintillometer array observations C n 2 (h) is determined for heights corresponding to the first 500 m along the line-of-sight. With minor changes this seeing monitor can also be used for other extended objects like the Moon and planets.  相似文献   

8.
The Fundamental plane provides a sensitive tool to measure the change in the M/L ratio of early type galaxies with redshift. The evolution of the M/L ratio is a function of the star formation history. It depends on the IMF, the formation redshift, and cosmology. Some model examples are shown, and a first result on the cluster Abell 665 at z=0.18 is given. The measurements confirm the cosmological surface brightness dimming, and imply an evolution of the (red) L/M ratio ∝ (1 + z)1.8±0.7. More data are needed to extend this result to higher redshifts, and to test the underlying assumptions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This article describes an update of the physical models that we use to reconstruct the FUV and EUV irradiance spectra and the radiance spectra of the features that at any given point in time may cover the solar disk depending on the state of solar activity. The present update introduces important modifications to the chromosphere–corona transition region of all models. Also, the update introduces improved and extended atomic data. By these changes, the agreement of the computed and observed spectra is largely improved in many EUV lines important for the modeling of the Earth’s upper atmosphere. This article describes the improvements and shows detailed comparisons with EUV/FUV radiance and irradiance measurements. The solar spectral irradiance from these models at wavelengths longer than ≈?200 nm is discussed in a separate article.  相似文献   

10.
云南天文台的太阳Stokes光谱望远镜是一台通过测量磁敏谱线的Stokes参数I,Q,U和V的轮廓来研究太阳磁场精细结构的光谱型矢量磁场测量仪。它利用4个完整的Stokes轮廓所蕴含的丰富信息,完全确定辐射的偏振状态,从而精确地测定太阳黑子区的矢量磁场。文章首先介绍了该望远镜的结构,进而详细地介绍了该望远镜所测量的偏振光谱资料的处理方法。  相似文献   

11.
太阳耀斑是太阳大气中最为剧烈的活动现象之一,涉及到很多复杂的物理过程,包括快速的能量释放、等离子体的不稳定性、高能粒子的加速和传播、耀斑大气辐射和动力学变化、物质的运动和抛射现象等.  相似文献   

12.
Warren  H.P. 《Solar physics》1999,190(1-2):363-377
Using SUMER observations taken above the limb of a quiet region we derive electron temperatures, emission measures, and absolute elemental abundances. This analysis, which uses recently published ionization balance calculations and the latest solar photospheric abundances, indicates that the low-FIP elements are enriched by a factor of 2.3±0.7 in the corona, which is smaller than some previous measurements. TRACE observations of this region yield systematically lower temperatures and emission measures.  相似文献   

13.
Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth’s atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth’s atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.  相似文献   

14.
Proper numerical simulation of the Earth’s climate change requires reliable knowledge of solar irradiance and its variability on different time scales, as well as the wavelength dependence of this variability. As new measurements of the solar spectral irradiance have become available, so too have new reconstructions of historical solar irradiance variations, based on different approaches. However, these various solar spectral irradiance reconstructions have not yet been compared in detail to quantify differences in their absolute values, variability, and implications for climate and atmospheric studies. In this paper we quantitatively compare five different reconstructions of solar spectral irradiance changes during the past four centuries, in order to document and analyze their differences. The impact on atmosphere and climate studies is discussed in terms of the calculation of short wave solar heating rates.  相似文献   

15.
The sky brightness is a critical parameter for estimating the coronal observation conditions for a solar observatory. As part of a site-survey project in Western China, we measured the sky brightness continuously at the Lijiang Observatory in Yunnan province in 2011. A sky brightness monitor (SBM) was adopted to measure the sky brightness in a region extending from 4.5 to 7.0 apparent solar radii based on the experience of the Daniel K. Inouye Solar Telescope (DKIST) site survey. Every month, the data were collected manually for at least one week. We collected statistics of the sky brightness at four bandpasses located at 450, 530, 890, and 940 nm. The results indicate that aerosol scattering is of great importance for the diurnal variation of the sky brightness. For most of the year, the sky brightness remains under 20 millionths per airmass before local Noon. On average, the sky brightness is less than 20 millionths, which accounts for 40.41% of the total observing time on a clear day. The best observation time is from 9:00 to 13:00 (Beijing time). The Lijiang Observatory is therefore suitable for coronagraphs investigating the structures and dynamics of the corona.  相似文献   

16.
After surveying the spectra of 39 prominences observed by the Multichannel Infrared Solar Spectrograph at Purple Mountain Observatory and the 25 cm coronagraph at the Norikura Solar Observatory, we found that about 28% of them show small spatial scale (6"- 8") and short time scale (tens of seconds to a few minutes), unusual large broadening and large shift velocities in spectral lines including Hα, Hβ, Hε, Ca Ⅱ H, Ca Ⅱ K, Ca2Ⅱ 8542 A, He Ⅰ D3 and HeⅠ 10830 A. We present in detail two typical events observed respectively on 2002 May 27 and 1981 August 2. The full-width at half maximum of the widest profile of the 2001 prominence is 1.8 A for Ha and 2.9 A for He I 10830 A, while that of the 1981 prominence is 5.3 A for Hβ, 3.6 A for Ca Ⅱ K, 4.0 A for Ca Ⅱ H and 2.8 A for He Ⅰ D3. Such broadenings generally occur at a level of several-thousand kilometres above the chromosphere. Further, most of these prominences manifest a rotation of (0.4-1.35) ×10-2 rad s-1 pointing to the Sun and large line  相似文献   

17.
We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of ∼50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2×105 more positrons than what is inferred from X-ray and γ-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and γ rays. We find that the same 5×1035 electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.  相似文献   

18.
The spatial and spectral behaviors of two solar flares observed by the Nobeyama Radioheliograph (NoRH) on 24 August 2002 and 22 August 2005 are explored. They were observed with a single loop-top source and double footpoint sources at the beginning, then with looplike structures for the rest of the event. NoRH has high spatial and temporal resolution at the two frequencies of 17 and 34 GHz where a nonthermal radio source is often optically thin. Such capabilities give us an opportunity to study the spatial and spectral behaviors of different microwave sources. The 24 August 2002 flare displayed a soft – hard – soft (SHS) spectral pattern in the rising – peak – decay phases at 34 GHz, which was also observed for the spectral behavior of both loop-top and footpoint sources. In contrast, the 22 August 2005 flare showed a soft – hard – harder (SHH) spectral pattern for its both loop-top and footpoint sources. It is interesting that this event showed a harder spectrum in the early rising phase. We found a positive correlation between the spectral index and microwave flux in both the loop-top source and the footpoint sources in both events. The conclusions drawn from the flux index could apply to the electron index as well, because of their simple linear relationship under the assumption of nonthermal gyrosynchrotron mechanism. Such a property of spatial and spectral behaviors of microwave sources gives an observational constraint on the electron acceleration mechanism and electron propagation.  相似文献   

19.
Calculations of spectral darkening and visibility functions for the brightness oscillations of the Sun resulting from global solar oscillations are presented. This has been done for a broad range of the visible and infrared continuum spectrum. The procedure for the calculations of these functions includes the numerical computation of depth-dependent derivatives of the opacity caused by p modes in the photosphere. A radiative-transport code was used for this purpose to get the disturbances of the opacities from temperature and density fluctuations. The visibility and darkening functions are obtained for adiabatic oscillations under the assumption that the temperature disturbances are proportional to the undisturbed temperature of the photosphere. The latter assumption is the only way to explore any opacity effects since the eigenfunctions of p-mode oscillations have not been obtained so far. This investigation reveals that opacity effects have to be taken into account because they dominate the violet and infrared part of the spectrum. Because of this dominance, the visibility functions are negative for those parts of the spectrum. Furthermore, the darkening functions show a wavelength-dependent change of sign for some wavelengths owing to these opacity effects. However, the visibility and darkening functions under the assumptions used contradict the observations of global p-mode oscillations, but it is beyond doubt that the opacity effects influence the brightness fluctuations of the Sun resulting from global oscillations.  相似文献   

20.
This paper describes a new reference solar spectrum retrieved from measurements of the satellite instrument SCIAMACHY in the wavelength region from \(0.24~\upmu\mbox{m}\) to \(2.4~\upmu\mbox{m}\) and its comparison with several other established solar reference spectra. The SCIAMACHY reference spectrum was recorded early in the mission before substantial optical degradation due to the harsh space environment sets in. The radiometric calibration of SCIAMACHY, applied in this study, includes a physical model of the scanner unit. Furthermore, SCIAMACHY’s internal white light source (WLS) is used to correct for on-ground to in-flight changes. The resultant calibrated solar spectrum from SCIAMACHY is in good agreement with several available solar spectral irradiance (SSI) references in the visible spectral range. Strong throughput losses due to detector icing in the near infrared (NIR) are now adequately accounted for. Nevertheless, a deficit with respect to the ATLAS-3 composite and SORCE/SIM SSI is observed in the NIR. However, the SCIAMACHY solar reference spectrum agrees well with the recently re-evaluated SOLAR/SOLSPEC-ISS and recent ground measurements taken at Mauna Loa in the NIR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号