首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
Numerous studies in the past few years have analyzed possible effects of planetary migration on the small bodies of the Solar System (mainly asteroids and KBOs), with the double aim of explaining certain dynamical structures in these systems, as well as placing limits on the magnitude of the radial migration of the planets. Here we undertake a similar aim, only this time concentrating on the dynamical stability of planetary satellites in a migration scenario. However, different from previous works, the strongest perturbations on satellite systems are not due to the secular variation of the semimajor axes of the planets, but from the planetesimals themselves. These perturbations result from close approaches between the planetesimals and satellites.We present results of several numerical simulations of the dynamical evolution of real and fictitious satellite systems around the outer planets, under the effects of multiple passages of a population of planetesimals representing the large-body component of a residual rocky disk. Assuming that this component dominated the total mass of the disk, our results show that the present systems of satellites of Uranus and Neptune do not seem to be compatible with a planetary migration larger than even one quarter that suggested by previous studies, unless these bodies were originated during the late stage of evaporation of the planetesimal disk. For larger variations of the semimajor axes of the planets, most of the satellites would either be ejected from the system or suffer mutual collisions due to excitation in their eccentricities. For the systems of Jupiter and Saturn, these perturbations are not so severe, and even large migrations do not introduce large instabilities.Nevertheless, even a small number of 1000-km planetesimals in the region may introduce significant excitation in the eccentricities and inclinations of satellites. Adequate values of this component may help explain the present dynamical distribution of distant satellites, including the highly peculiar orbit of Nereid.  相似文献   

2.
A new analytical method for calculating satellite orbital perturbations due to different disturbing forces is developed. It is based on the Poincaré method of small parameter but takes advantages of modern high-performance computers and of the tools of computer algebra. All perturbations proportional up to and including the 5th-order of small parameters are obtained. The method can precisely calculate the effects of all geodynamical forces on satellite motion given by the most up-to-date IAU and IERS models, such as non-central Earth gravity potential, precession and nutation of the geoequator, polar motion and irregularities in the Earth's rotation, effect of ocean and solid Earth tides, pole tide, and secular variations of gravity coefficients.Numerical tests prove the method's accuracy to be equivalent to 1–2 cm when calculating positions of high altitude geodetic satellites (like ETALON), and/or of GLONASS navigational spacecraft. The accuracy is stable over 1 year at least and comparable to that of the best tracking measurements of satellites.Positions of low altitude geodynamical satellites (like STARLETTE) by the analytical method are calculated to an accuracy of about 70cm over a month's interval. The method is developed for future use in GLONASS/GPS on-board ephemeris computation where it can improve the current scheme of their flight control.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
Anonlinear analytical theory of secular perturbations in the problem of the motion of a systemof small bodies around a major attractive center has been developed. Themutual perturbations of the satellites and the influence of the oblateness of the central body are taken into account in the model. In contrast to the classical Laplace-Lagrange theory based on linear equations for Lagrange elements, the third-degree terms in orbital eccentricities and inclinations are taken into account in the equations. The corresponding improvement of the solution turns out to be essential in studying the evolution of orbits over long time intervals. A program inC has been written to calculate the corrections to the fundamental frequencies of the solution and the third-degree secular perturbations in orbital eccentricities and inclinations. The proposed method has been applied to investigate the motion of the major Uranian satellites. Over time intervals longer than 100 years, allowance for the nonlinear terms in the equations is shown to give corrections to the coordinates of Miranda on the order of the orbital eccentricity, which is several thousand kilometers in linear measure. For other satellites, the effect of allowance for the nonlinear terms turns out to be smaller. Obviously, when a general analytical theory of motion for the major Uranian satellites is constructed, the nonlinear terms in the equations for the secular perturbations should be taken into account.  相似文献   

4.
After the discovery of a huge number of satellites around Jupiter, Saturn, and Uranus, it is necessary to collect together information about all of the planetary satellite systems and to define the possible classification of objects and types of their motion. We give physical parameters of the satellites: their masses, sizes, apparent magnitudes in opposition, and geometrical albedos. We present some of the orbital quantities that characterize the orbits, their shapes and orientation in space, as well as data on the rotation of satellites. The emphasis is on the peculiarities of their motion—the forces acting on them, the main orbital perturbations, and the influence of commensurabilities in the mean motions of satellites. We list references to the main theories of their motion.  相似文献   

5.
We analyze the possibility of determining the masses of outer planetary satellites from their mutual gravitational perturbations via ground-based observations. Such a technique has been applied in (Emelyanov, 2005b) to determine the mass of the Jovian satellite Himalia. In this paper, we use the least-squares method to compute the errors of satellite masses inferred from simulated observations. We analyze several of the most suitable variants of groups of outer satellites of planets with maximum mutual attraction. We found that the mass of the Satumian satellite Phoebe (S9) can be refined by continuing observations of the satellite S25 Mundilfari until 2027. We show that the masses of other known outer planetary satellites cannot be determined from ground-based observations.  相似文献   

6.
New versions of the ephemerides for the Galilean satellites of Jupiter (Io, Europa, Ganymede, and Callisto) constructed by numerically integrating the equations of motion of the satellites are presented. The satellite motionmodel takes into account the non-sphericity of Jupiter, the mutual perturbations of the satellites, and the perturbations from the Sun and major planets. The initial satellite motion parameters have been improved based on all the available series of ground-based optical observations spanning the interval 1891-2017, spacecraft observations, and radar observations. As a result, the coefficients of the expansion of the satellite coordinates and velocities in terms of Chebyshev polynomials in the interval 1891- 2025 have been obtained. The root-mean-square errors of the observations and the graphs of comparison of the constructed ephemerides both with the observations and with Lainey's numerical ephemerides are presented. The constructed ephemerides are publicly accessible.  相似文献   

7.
Astrometric and photometric observations of major planets, their satellites and asteroids have been made with the 26-in. refractor of the Pulkovo observatory during the period from 1995 to 2006. The CCD (ST6) and photographic observations were carried out. Accurate relative position of satellites of Jupiter and Saturn have been derived. The positions of Saturn have been calculated using the theoretically predicted coordinates of satellites relative to the planet without measurements of the photographic images of the planet. Also the observations of Hale-Bopp comet and Mercury transit have been made. The 26-in. refractor has been included into the international campaign PHEMU-2003: photometric CCD observations of mutual occultations and eclipses of Galilean satellites. The light curves of the events have been obtained and parameters of the events have been determined.  相似文献   

8.
W.B. Hubbard  J.D. Anderson 《Icarus》1978,33(2):336-341
Flyby encounters of the Galilean satellites from a Jupiter orbiter spacecraft could yield information about the second-degree gravity harmonics of these satellites. We have calculated the expected values of these harmonics for a range of plausible interior models in hydrostatic equilibrium. Because the satellites respond to comparable perturbations from rotation and tides, an independent test of hydrostatic equilibrium is feasible. For Io and Ganymede, the expected measurement accuracy from a nominal encounter should make possible an excellent discrimination from the ensemble of interior models. For Europa, a qualitative distinction between near-uniform and centrally condensed models seems feasible. Only for Callisto is the proposed experiment of marginal value.  相似文献   

9.
We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth’s satellites. We describe parameters of the motion model used for the artificial Earth’s satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.  相似文献   

10.
In this paper we present an analytical theory with numerical simulations to study the orbital motion of lunar artificial satellites. We consider the problem of an artificial satellite perturbed by the non-uniform distribution of mass of the Moon and by a third-body in elliptical orbit (Earth is considered). Legendre polynomials are expanded in powers of the eccentricity up to the degree four and are used for the disturbing potential due to the third-body. We show a new approximated equation to compute the critical semi-major axis for the orbit of the satellite. Lie-Hori perturbation method up to the second-order is applied to eliminate the terms of short-period of the disturbing potential. Coupling terms are analyzed. Emphasis is given to the case of frozen orbits and critical inclination. Numerical simulations for hypothetical lunar artificial satellites are performed, considering that the perturbations are acting together or one at a time.  相似文献   

11.
Secular perturbations of fictitious satellites that are initially circular and in the equatorial plane of Uranus are discussed. Satellites located in the region where the solar perturbation is dominant become highly eccentric and inclined with respect to the equator, and have a possibility to collide with Uranus. Satellites located in the region where the oblateness perturbation is dominant keep the original eccentricity and the inclination. A scenario of a possible extinction of outer satellites of Uranus is also discussed.  相似文献   

12.
The absence of Uranus’s equatorial satellites in the region of approximately equal influence of its oblateness and solar perturbations is explained in terms of an improved physical model. This model is more complete than the previously studied case of an integrable averaged problem. The model improvement stems from the fact that the inclination of Uranus’s equator to the ecliptic differs by 90° and that the orbital evolution of Uranus due to secular planetary perturbations is taken into account. The lifetime of Uranus’s hypothetical satellites in orbits with semimajor axes 1.3–7 million km can be estimated by numerically integrating the evolution equations to be ~104 yr. This is the time scale on which the evolution of the orbits leads to their intersection with the orbits of inner satellites.  相似文献   

13.
A comparative review of analytic theories for the motion of Earth satellites in quasi-circular orbits written in the spherical coordinate frame is presented. The theory of motion is developed for satellites in quasi-circular and quasi-equatorial orbits subjected to geopotential, luni-solar and solar radiation pressure force perturbations. The intermediate orbit is Keplerian and the equations of motion are solved by the Lyapunov–Poincaré small parameter method. Both resonant and non-resonant cases are considered. The results can be useful for the development of a complete theory of weakly eccentric orbits.  相似文献   

14.
《New Astronomy》2007,12(3):224-233
In this paper we analyze in detail some aspects of the proposed use of Ajisai and Jason-1, together with the LAGEOS satellites, to measure the general relativistic Lense–Thirring effect in the gravitational field of the Earth. A linear combination of the nodes of such satellites is the proposed observable. The systematic error due to the mismodelling in the uncancelled even zonal harmonics would be ∼1% according to the latest present-day CHAMP/GRACE-based Earth gravity models. In regard to the non-gravitational perturbations especially affecting Jason-1, only relatively high-frequency harmonic perturbations should occur: neither semisecular nor secular bias of non-gravitational origin should affect the proposed combination: their maximum impact is evaluated to ∼4% over 2 years. Our estimation of the root-sum-square total error is about 4–5% over at least 3 years of data analysis required to average out the uncancelled tidal perturbations.  相似文献   

15.
The orbital accelerations of certain balloon satellites exhibit marked oscillations caused by solar radiation impinging on the surface of the satellites, which, once spherical, have assumed a spheroidal shape producing a component of force at right-angles to the Sun-satellite direction. Given the characteristics and orientation of the satellite, the equations of force are determined by the formulae of Lucas. Otherwise the phase-angle and magnitude of the right-angle force are determined by trial and error, or best-fit techniques. Using a variation of the approach developed by Aksnes, a semi-analytical algorithm is presented for evaluating the perturbations of the Keplerian elements by direct solar radiation pressure on a spheroidal satellite. The perturbations are obtained by summing over the sunlit part of each orbit and allow for a linear variation in the phase-angle. The algorithm is used to determine the orbital accelerations of 1963-30D due to direct solar radiation pressure, and these results are compared to the observed values over two separate periods of the satellite's lifetime.  相似文献   

16.
We have started a program of high-resolution (0.4/pixel) 10m imaging of bipolar outflow sources using the 10m camera CAMIRAS. We present recent results obtained at the Canada France Hawaii Telescope which reveal extended emission or IR companions in several luminous objects. The extended emission we detected probably arises from transiently heated very small grains, while the newly discovered companions could contribute significantly to the outflow activity and extended far-IR emission usually attributed to the main optical source.  相似文献   

17.
A new formula has been derived for geopotential expressed in terms of orbital elements. The summation sequence was changed so that the terms of the same frequencies would be grouped and the generalized lumped coefficients were derived. The proposed formula has the same form for both odd and evenl-m.Applying Hori's perturbation method, new formulae were derived for tesseral harmonic perturbations in nonsingular orbital elements:l+g, h, e cosg,e sing, L, andH. We show the possibility of effective application of the derived formulae to the calculation of orbits of very low satellites taking into account the coefficients of tesseral harmonics of the Earth's gravitational field up to high orders and degrees. As an example the perturbations up to the order and degree of 90 for the orbit of GRM satellites were calculated. The calculations were carried out on an IBM AT personal computer.  相似文献   

18.
We discuss the resonance problems resulting from critical inclination and commensurability in the motion of an artificial satellite. We consider the perturbation due to the Earth's asphericity on the average model and we derive the equilibrium solution and the corresponding region of libration and compare with the actual motion of a satellite. We find that the resonance plays a stabilizing role in the motion and that the luni-solar perturbations have a significant effect on the orbital resonance of 24-h synchronous satellites.  相似文献   

19.
The orbital effects of the Lorentz force on the motion of an electrically charged artificial satellite moving in the Earth's magnetic field are determined. The geomagnetic field is considered as a multipole potential field and the satellite electrical charge is supposed to be constant. The relativistic perturbations of the main geomagnetic field are discussed briefly. The results are concentrated on the determination of the secular changes, and numerical values are computed for the case of the LAGEOS satellite. The results are discussed in the context of a possible detection of the Lense-Thirring effect analyzing the orbital perturbations of the LAGEOS and LAGEOS X satellites.  相似文献   

20.
Recent Viking results indicate the Martian satellites are composed of carbonaceous chondritic material, suggesting that Phobos and Deimos were once asteroids captured by Mars. On the other hand, the low eccentricities and inclinations of their orbits on the equator of Mars argue against that hypothesis. This paper presents detailed calculations of the tidal evolution of Phobos and Deimos, considering dissipation in both Mars and its satellites simultaneously and using a new method applicable for any value of the eccentricity. In particular, including precession of the satellites' orbits indicates that they have always remained close to their Laplacian plane, so that the orbital planes of Phobos and Deimos switched from near the Martian orbital plane to the Martian equator once the perturbations due to the planetary oblateness dominated the solar perturbations, as they do presently. The results show that Deimos has been little affected by tides, but several billion (109) years ago, Phobos was in a highly eccentric orbit lying near the common plane of the solar system. This outcome is obtained for very reasonable values of dissipation inside Mars and inside Phobos. Implications for the origin of the Martian satellites are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号