首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrodynamic Response of Northeastern Gulf of Mexico to Hurricanes   总被引:1,自引:0,他引:1  
The northeastern Gulf of Mexico in the USA is extremely susceptible to the impacts of tropical cyclones because of its unique geometric and topographic features. Focusing on Hurricanes Ivan (2004) and Katrina (2005), this paper has addressed four scientific questions on this area’s response to hurricanes: (1) How does the shallow, abandoned Mississippi delta contribute to the storm surge? (2) What was the controlling factor that caused the record-high storm surge of Hurricane Katrina? (3) Why are the responses of an estuary to Hurricanes Ivan and Katrina so different from the corresponding surges on the open coast? (4) How would the storm surge differ if Hurricane Katrina had taken a different course? Guided by field observations of winds, waves, water levels, and currents, two state-of-the-art numerical models for storm surges and wind waves have been coupled to hindcast the relevant hydrodynamic conditions, including storm surges, surface waves, and depth-averaged currents. Fairly good agreement between the modeled and measured surge hydrographs was found. The quantitative numerical simulations and simple qualitative analysis have revealed that the record-high storm surge of Hurricane Katrina was caused by the interaction of the surge with the extremely shallow, ancient deltaic lobe of Mississippi River. A hypothetical scenario formed by shifting the path of Hurricane Katrina to the observed path of Hurricane Frederic (1979) resulted in a much smaller surge than that observed in coastal Mississippi and Louisiana. However, this scenario did still result in a high surge near the head of Mobile Bay. One of the important lessons learned from Hurricane Katrina is that the Saffir–Simpson scale should be systematically revised to reflect the topographic and geometric features of a complex, heterogeneous coast, including the possible surge amplification in an estuary or a submerged river delta.  相似文献   

2.
In 2011, the National Oceanic and Atmospheric Administration (NOAA) reported that the coastal population of the US that lives within 50 miles of the shoreline exceeded 50 % for the first time in history in spite of a high level of exposure to hurricanes and related flooding. Hurricane Andrew (1992), Mitch (1998), Ivan (2004), Katrina (2005), and Sandy (2012) are recent reminders of both the financial and human toll that result from hurricanes. Generally, hurricanes bring with them torrential rains and storm surges which enable destructive flooding inland and at the coastal (land–sea) interface and cause extensive and severe damages to residential structures and fatalities. An improved understanding of hurricanes and its interactive effects on the built environment will significantly reduce structural and non-structural damage and loss of life. This paper presents the method and results of a study that focused on application of a hybrid loss model which combines structural and non-structural damage vulnerabilities to quantify the damage and subsequent loss as a result of hurricanes, but particularly the extension to the community level. The methodology presented in this paper will help enable designers and/or planners to assess the change in anticipated losses at the community level as a result of one or more mitigation strategies as well as provide insight into land use planning.  相似文献   

3.
Hurricanes 2004: An overview of their characteristics and coastal change   总被引:2,自引:0,他引:2  
Four hurricanes battered the state of Florida during 2004, the most affecting any state since Texas endured four in 1884. Each of the storms changed the coast differently. Average shoreline change within the right front quadrant of hurricane force winds varied from 1 m of shoreline advance to 20 m of retreat, whereas average sand volume change varied from 11 to 66 m3 m−1 of net loss (erosion). These changes did not scale simply with hurricane intensity as described by the Saffir-Simpson Hurricane Scale. The strongest storm of the season, category 4 Hurricane Charley, had the least shoreline retreat. This was likely because of other factors like the storm's rapid forward speed and small size that generated a lower storm surge than expected. Two of the storms, Hurricanes Frances and Jeanne, affected nearly the same area on the Florida east coast just 3 wk apart. The first storm, Frances, although weaker than the second, caused greater shoreline retreat and sand volume erosion. As a consequence, Hurricane Frances may have stripped away protective beach and exposed dunes to direct wave attack during Jeanne, although there was significant dune erosion during both storms. The maximum shoreline change for all four hurricanes occurred during Ivan on the coasts of eastern Alabama and the Florida Panhandle. The net volume change across a barrier island within the Ivan impact zone approached zero because of massive overwash that approximately balanced erosion of the beach. These data from the 2004 hurricane season will prove useful in developing new ways to scale and predict coastal-change effects during hurricanes.  相似文献   

4.
Reproductive aspects of life history are known to be important in recovery following disturbance in many plant species although this has not been well studied in mangroves. Hurricane Charley devastated large areas of mangroves in Charlotte Harbor, Florida, in August 2004. We surveyed 6 forests in Charlotte Harbor (2002, 2003, and 2005) and 16 in Tampa Bay, Florida (2001, 2002, 2003, and 2005) for total numbers of reproducing trees and trees heterozygotic for albinism that produce both normal and albino propagules. Tree size (estimated height and diameter at breast height) was also recorded for sentinel heterozygotic trees. Total number of reproducing trees km−1 was used as an index of reproductive output of the population, and deviation from the 3∶1 (normal:albino propagules) ratio on heterozygotic trees expected with 100% selfing was used to estimate outcrossing. Numbers ofRhizophora mangle reproducing trees km−1 of shoreline in Charlotte Harbor were reduced by an order of magnitude following Hurricane Charley, while numbers of reproducing trees in Tampa Bay were similar to those of previous years. Reduced reproduction in Charlotte Harbor was accompanied by fewer new recruits in plots on Sanibel and Captiva Islands. Numbers of new recruits after the storm also tended to be fewer in plots where canopy loss was greater. More new recruits occurred in sites that had higher densities of pre-stormRhizophora seedlings and greater relative dominance byRhizophora. Outcrossing of sentinel trees was 2.5 times greater, in Charlotte Harbor (mean site−1=33.6±6.7%; with 17% of forest sites completely selfing) than in Tampa Bay (mean site−1=13.4±4.7%; with 40% of sites completely selfing), although the implications for seedling recruitment of this difference are not known.  相似文献   

5.
In 2005, Hurricane Katrina produced a distinct, acute ecological disturbance of the benthic invertebrate community of Lake Pontchartrain, LA, USA. The bivalve Rangia cuneata and other community dominants were lost from 50% (815 km2) of the lake bottom. The storm surge directly killed benthic organisms and produced salinity stratification that caused episodes of detrimental low dissolved oxygen concentration at depths >3.7 m. Past disturbance of the bottom by shell dredging and intrusion of higher salinity bottom water through deep shipping channels appears to have contributed to the severity of this impact. Colonization by tolerant opportunistic taxa occurred, but low rainfall after Katrina has slowed the recovery of the typical rangia community. A decrease in water transparency and an increase in turbidity and chlorophyll a were associated with the loss of clam biomass. Other hurricanes may have produced less obvious but similar effects on smaller spatial and temporal scales.  相似文献   

6.
Decreased salinity and submarine light associated with hurricanes of 2004?C2005 impacted seagrass habitats in the Florida coastal zone. A combination of salinities ??20 and light attenuation ??1.5?m?1 resulting from the freshwater discharge in 2005 were among the drivers for a widespread decrease in the coverage and biomass of Syringodium filiforme (manatee grass) in 2006. These observations provided an opportunity to develop and apply a modeling framework to simulate responses of S. filiforme to variable water quality. The framework connects water column variables to field monitoring of seagrass abundance and salinity growth response experiments. The base model was calibrated with macrophyte abundance observed in southern Indian River Lagoon (IRL) from 2002 to 2007 and tested against shoot data from a different time (1997?C2002) and nearby location in the IRL. Model shoot biomass (gC?m?2) was similar to field observations (r 2?=?0.70) while responding to monthly seasonal fluctuations in salinity and light throughout the 6-year simulations. Field and model results indicated that S. filiforme growth and survival were sensitive to, and increased with, rising salinity throughout 2007. This modeling study emphasizes that discharge, salinity, and submarine light are inter-dependent variables affecting South Florida seagrass habitats on seasonal to inter-annual time scales.  相似文献   

7.
Between August 14 and September 26, 2004, four tropical weather systems (Charley, Frances, Ivan, and Jeanne) affected the central Indian River Lagoon (IRL). The central IRL received a prodigious amount of rainfall for the 2 mo, between 72 and 83 cm, which is a once-in-50-yr rainfall event. High stream discharges were generated that, combined with wind-suspended sediments, significantly reduced salinities and water transparency. In September, salinities among central IRL segments dropped from 30 psu or more to ≤15 psu, color increased from a low of 10 pcu to ≥100 pcu, and turbidity increased from ≤3 NTU up to 14 NTU. Evidence of the hurricanes' physical effects on seagrasses (burial, no scour) was limited to just one of the more than 25 sites inspected. Within 2 to 3 mo following the hurricane period, most parameters related to water transparency returned to or showed improvement over their prehurricane (February–July 2004) levels. Unseasonably low salinities (<20 psu) and moderately high color (>20 pcu) were observed through spring 2005, largely attributable to a relatively long residence time and a wetter-than-average spring season in 2005. By the end of the study period (July 2006), the central IRL generally showed a continuation of two opposite seagrass trends—an increase in depthlimit coverage but a decline in coverage density—that began before 2004. Also, within a limited reach of the central IRL, there was a temporary shift in species composition in summer 2005 (Ruppia maritima increased asHalodule wrightü decreased). It is likely that the persistently low salinities (not color) in 2004–2005 affected the species composition and coverage density. This study reveals that seagrasses are resilient to the acute effects of hurricanes and underscores the need to reduce chronic, an thropogenic effects on seagrasses.  相似文献   

8.
A broad-scale survey of seagrass species composition and distribution along Florida's central Gulf Coast (known as the Big Bend region) was conducted in the summer of 2000 to address growing concerns over the potential effects of increased nutrient loading from adjacent coastal rivers. Iverson and Bittaker (1986) originally surveyed seagrass distribution in this region between 1974–1980. We revisited 188 stations from the original survey, recording the presence or absence of all seagrass species. Although factors such as accuracy of station relocation, differences in sampling effort among studies, and length of time between surveys preclude statistical comparisons, several interesting patterns emerged. While the total number of stations occupied by the three most common seagrass species,Thalassia testudinum, Syringodium filiforme, andHalodule wrightii, was similar between the two time periods, we observed a change in the number of records of each species as well as changes in distribution with depth.T. testudinum andHalophila engelmanni occurrence declined in the deepest areas of the region, while the number of stations occupied byS. filiforme andH. wrightii increased in nearby areas. We observed several localized areas of seagrass loss, frequently associated with the mouths of coastal rivers. These results suggest that increased nutrient loading to coastal rivers that discharge into the Big Bend area may be affecting seagrasses by increasing phytoplankton abundance in the water column, thus changing water clarity characteristics of the region.  相似文献   

9.
Blue carbon initiatives require accurate monitoring of carbon stocks. We examined sources of variability in seagrass organic carbon (Corg) stocks, contrasting spatial with short temporal scales. Seagrass morphology and sediment Corg stocks were measured from biomass and shallow sediment cores collected in Moreton Bay, Australia. Samples were collected between 2012 and 2013, from a total of 77 sites that spanned a gradient of water turbidity. Environmental measures of water quality between 2000 and 2013 revealed strong seasonal fluctuations from summer to winter, yet seagrass biomass exhibited no temporal variation. There was no temporal variability in Corg stocks, other than below ground biomass stocks were slightly higher in June 2013. Seagrass locations were grouped into riverine, coastal, and seagrass loss locations and short temporal variability of Corg stocks was analysed within these categories to provide clearer insights into temporal patterns. Above ground Corg stocks were similar between coastal and riverine meadows. Below ground Corg stocks were highest in coastal meadows, followed by riverine meadows. Sediment Corg stocks within riverine meadows were much higher than at coastal meadows and areas of seagrass loss, with no difference in sediment Corg stocks between these last two categories. Riverine seagrass meadows, of higher turbidity, had greater total Corg stocks than meadows in offshore areas irrespective of time. We suggest that Corg stock assessment should prioritise sampling over spatial gradients, but repeated monitoring over short time scales is less likely to be warranted if environmental conditions remain stable.  相似文献   

10.
We examined the spatial and temporal variability in drift macroalgal abundance in two seagrass dominated estuarine systems on the Texas coast: Redfish Bay (in the Copano-Aransas Estuary) and Lower Laguna Madre. Measurements of benthic macroalgal variability were made in conjunction with a suite of biotic (seagrass biomass, percent cover, blade width and length, shoot density, epiphyte biomass, seagrass blade C:N ratios, and drift macroalgal abundance and composition) and abiotic (inorganic nitrogen and phosphorus concentrations, chlorophylla, total suspended solids, light attenuation, salinity, temperature, total organic carbon and porewater NH4 +) indicators. All parameters were measured at 30 sites within each estuary semiannually from July 2002 to February 2004. Principal components analysis (PCA) was used to examine relationships between drift macroalgal abundance and biotic and abiotic parameters. In both Redfish Bay and Lower Laguna Madre, drift macroalgal distribution was widespread, and during three of four sampling periods, abundance was equal to abovegro und biomass ofThalassia testudinum, the dominant seagrass. Drift macro algal abundance was highly variable within sites, between sites, and between seasons in both estuaries. No significant differences in drift macroalgal abundance were found between Redfish Bay and Lower Laguna Madre. In Redfish Bay, drift macroalgae (90.1±10.2 gm−2) tended to accumulate in bare patches within seagrass beds. In Lower Laguna Madre, drift macroalgae (72.7±10.7 gm−2) tended to accumulate in areas of dense seagrass cover rather than in bare areas. We found no relationship between drift macroalgal abundance and low (<2μM) water column nutrient concentrations, and although several of our measured parameters were related to drift macroalgal abundance, none alone sufficiently explained the variability in abundance noted between the two estuarine systems. The contrasting patterns of macroalgal accumulation between Redrish Bay and Lower Laguna Madre likely reflect differences in water circulation characteristics between the two regions as dictated by local physiography, in cluding the shape and orientation of the lagoons, with seasonal variations in macroalgal abundance related to changes in freshwater inflow and nutrient loading.  相似文献   

11.
The US Army Corps of Engineers recently dredged and permanently reopened Packery Channel, historically a natural tidal inlet, to allow water exchange between the Gulf of Mexico and the Laguna Madre, TX, USA. The main objective of this study was to characterize estuarine-dependent recruitment and community structure in seagrass habitats adjacent to Packery Channel pre- and post-channel opening. We sampled fish and crustacean abundance using an epibenthic sled in Halodule wrightii seagrass meadows in both control and impact locations over 2 years, 1 year before the opening of Packery Channel (October 2004–May 2005) and 1 year after (July 2005–April 2006). Using the before–after control–impact design, we found significantly fewer nekton post-channel opening. However, we found significantly higher mean densities of newly settled estuarine-dependent species (Sciaenops ocellatus, Micropogonias undulatus, Lagodon rhomboides, Callinectes sapidus, and penaeid shrimp) post-opening. Multivariate analyses showed significant community assemblage changes post-opening with increased contribution of estuarine-dependent species post-opening. Our results show that estuarine-dependent nekton are using Packery Channel as a means of ingress into areas of the upper Laguna Madre’s seagrass meadows that were previously inaccessible, which may lead to higher fisheries productivity for some of these economically and ecologically important fishery species.  相似文献   

12.
Several wind fields developed for Hurricane Katrina (2005) in the US Gulf of Mexico (GOM) are applied with the ADCIRC hydrodynamic model to explore the sensitivity of predictions of coastal surges to wind fields developed by alternative methods. The alternative model predictions are evaluated against water level measurements provided by gages at two coastal locations. It is found that all the post-event analyzed wind fields yield a range of predictions of only ±10% of the available peak surge measurements regardless of whether the wind fields are produced by dynamical boundary layer models, kinematic analysis methods or a blend. However, the richness of meteorological forcing data in the GOM is not typically matched in other basins affected by tropical cyclones and errors may be much larger where storm intensity and size parameters are estimated mainly from satellite data. The attributes and remaining critical deficiencies of current methods for surface wind specification in both data-rich and data-poor environments are reviewed.  相似文献   

13.
Marine phanerogams are ecosystem engineers, as their presence induces major environmental changes that impact on the benthic fauna. Consequently, modifications to the structure of benthic communities would be expected to be associated with seagrass decline. Since 2005, Zostera noltii seagrass beds in Arcachon Bay (France), the largest in Europe, have undergone a severe decline. Twelve stations distributed throughout the lagoon were sampled in 2002, and all were found to be densely planted at that time. Subsequently, the same stations were revisited in 2010 and seagrass cover had drastically decreased by that time. Based on benthic macrofauna, multidimensional scaling (MDS) analysis identified four groups. Years were separated. In 2002, two groups were distinct in relation to the water body, since in 2010 separation between the two other groups was related to seagrass occurrence. When looking at community structure and dominant species there were moderate differences within and between years, independent of seagrass decline. Seagrass loss did not drastically modify the species composition as they were preserved in the remaining seagrass patches. However, there was a drop in macrofauna abundance in unvegetated muddy compared with abundance in the remaining seagrass areas. Epifauna was particularly affected by seagrass decline. Among biotic indicators based on macrofauna, multivariate indicator MISS (Macrobenthic Index in Sheltered Systems) was in agreement with the similarity of macrofauna structure among groups, while other tested indicators performed badly in relation to seagrass occurrence. However, no index detected seagrass loss, highlighting the necessity of maintaining a separate survey on seagrass cover.  相似文献   

14.
Normalized Difference Vegetation Index (NDVI) data were used to investigate vegetation changes after Hurricane Katrina (2005) for the Weeks Bay Reserve and surrounding area of coastal AL. Landsat 5 satellite images were acquired before landfall (March 24, 2005), after landfall (September 16, 2005), and 8 months after landfall (April 28, 2006). The March 2005 to September 2005 image comparison showed that average NDVI values decreased by 49% after landfall. Continuing into the next year, average NDVI values were −44% lower in April 2006 than they were in March 2005. Among habitat types, the estuarine emergent wetland experienced the largest average NDVI value decrease (−64%). The estuarine emergent wetland NDVI values continued to decrease by −27% from September 2005 to April 2006, whereas other habitats increased in NDVI. This continued suppression of NDVI values was attributed to increased salinity from the storm surge and to regional drought conditions that occurred after landfall. These results provide insight into the sensitivity of coastal vegetation from the interactions of both tropical cyclones and long-term environmental conditions.  相似文献   

15.
Prior research on manatee (Trichechus manatus latirostris) survival in northwest Florida, based on mark-resighting photo-identification data from 1982–1998, showed that annual adult apparent survival rate was significantly lower during years with extreme storms. Mechanisms that we proposed could have led to lower estimates included stranding, injury from debris, being fatally swept out to sea, or displacement into poorly monitored areas due to storm-generated longshore currents or storm-related loss of habitat. In 2004 and 2005, seven major hurricanes impacted areas of Florida encompassing three regional manatee subpopulations, enabling us to further examine some of these mechanisms. Data from a group of manatees tracked in southwest Florida with satellite transmitters during Hurricanes Charley, Katrina, and Wilma showed that these animals made no significant movement before and during storm passage. Mark-resighting data are being collected to determine if survival rates were lower with the 2004 and 2005 storms.  相似文献   

16.
Three quarters of the global human population will live in coastal areas in the coming decades and will continue to develop these areas as population density increases. Anthropogenic stressors from this coastal development may lead to fragmented habitats, altered food webs, changes in sediment characteristics, and loss of near-shore vegetated habitats. Seagrass systems are important vegetated estuarine habitats that are vulnerable to anthropogenic stressors, but provide valuable ecosystem functions. Key to maintaining these habitats that filter water, stabilize sediments, and provide refuge to juvenile animals is an understanding of the impacts of local coastal development. To assess development impacts in seagrass communities, we surveyed 20 seagrass beds in lower Chesapeake Bay, VA. We sampled primary producers, consumers, water quality, and sediment characteristics in seagrass beds, and characterized development along the adjacent shoreline using land cover data. Overall, we could not detect effects of local coastal development on these seagrass communities. Seagrass biomass varied only between sites, and was positively correlated with sediment organic matter. Epiphytic algal biomass and epibiont (epifauna and epiphyte) community composition varied between western and eastern regions of the bay. But, neither eelgrass (Zostera marina) leaf nitrogen (a proxy for integrated nitrogen loading), crustacean grazer biomass, epifaunal predator abundance, nor fish and crab abundance differed significantly among sites or regions. Overall, factors operating on different scales appear to drive primary producers, seagrass-associated faunal communities, and sediment properties in these important submerged vegetated habitats in lower Chesapeake Bay.  相似文献   

17.
We evaluate if the distribution and abundance ofThalassia testudinum, Syringodium filiforme, andHalodule wrightii within Biscayne Bay, Florida, are influenced by salinity regimes using, a combination of field surveys, salinity exposure experiments, and a seagrass simulation model. Surveys conducted in June 2001 revealed that whileT. testudinum is found throughout Biscayne Bay (84% of sites surveyed),S. filiforme andH wrightii have distributions limited mainly to the Key Biscayne area.H. wrightii can also be found in areas influenced by canal discharge. The exposure of seagrasses to short-term salinity pulses (14 d, 5–45‰) within microcosms showed species-specific susceptibility to the salinity treatments. Maximum growth rates forT testudinum were observed near oceanic salinity values (30–40‰) and lowest growth rates at extreme values (5‰ and 45‰).S. filiforme was the most susceptible seagrass species; maximum growth rates for this species were observed at 25‰ and dropped dramatically at higher and lower salinity.H. wrightii was the most tolerant, growing well at all salinity levels. Establishing the relationship between seagrass abundance and distribution and salinity is especially relevant in South Florida where freshwater deliveries into coastal bays are influenced by water management practices. The seagrass model developed by Fong and Harwell (1994) and modified here to include a shortterm salinity response function suggests that freshwater inputs and associated decreases in salinity in nearshore areas influence the distribution and growth of single species as well as modify competitive interactions so that species replacements may occur. Our simulations indicate that although growth rates ofT. testudinum decrease when salinity is lowered, this species can still be a dominant component of nearshore communities as confirmed by our surveys. Only when mean salinity values are drastically lowered in a hypothetical restoration scenario isH. wrightii able to outcompeteT. testudinum.  相似文献   

18.
Pensacola Bay, Florida, was in the strong northeast quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, and the magnitude of the freshwater inflow pulse that followed the storm. We computed the magnitude of tidal flushing associated with the surge using a tidal prism model. We also evaluated hurricane effects on water quality using water quality surveys conducted 20 and 50 d after the storm, which we compared with a survey 14 d before landfall. We evaluated the scale of hurricane effects relative to normal variability using a 5-yr monthly record. Ivan's 3.5 m storm surge inundated 165 km2 of land, increasing the surface area of Pensacola Bay by 50% and its volume by 230%. The model suggests that 60% of the Bay's volume was flushed, initially increasing the average salinity of Bay waters from 23 to 30 and lowering nutrient and chlorophylla concentrations. Additional computations suggest that wind forcing was sufficient to completely mix the water column during the storm. Freshwater discharge from the largest river increased twentyfold during the subsequent 4 d, stimulating a modest phytoplankton bloom (chlorophyll up to 18 μg l−1) and maintaining hypoxia for several months. Although the immediate physical perturbation was extreme, the water quality effects that persisted beyond the first several days were within the normal range of variability for this system. In terms of water quality and phytoplankton productivity effects, this ecosystem appears to be quite resilient in the face of a severe hurricane effect.  相似文献   

19.
Social memory and resilience in New Orleans   总被引:1,自引:1,他引:0  
A key concept in resilience studies is that human societies can learn from hazard events and use their accumulated social memory to better contend with future catastrophes. This article explores the deliberate referral to historical records complied after Hurricane Betsy in 1965 and how they were used to prepare for tropical storms at the time of Hurricane Katrina in 2005. Despite proclamations that Louisiana would not repeat its mistakes, hazards planners seriously neglected the historical record.  相似文献   

20.
Soil samples were collected along a north–south transect extending from Manitoba, Canada, to the US–Mexico border near El Paso, Texas in 2004 (104 samples), a group of sites within New Orleans, Louisiana following Hurricane Katrina in 2005 (19 samples), and a Gulf Coast transect extending from Sulphur, Louisiana, to DeFuniak Springs, Florida, in 2007 (38 samples). Samples were collected from the top 40 cm of soil and were screened for the presence of total Bacillus species and Bacillus anthracis (anthrax), specifically using multiplex-polymerase chain reaction (PCR). Using an assay with a sensitivity of 170 equivalent colony-forming units (CFU) g−1 field moist soil, the prevalence rate of Bacillus sp./B. anthracis in the north–south transect and the 2005 New Orleans post-Katrina sample set were 20/5% and 26/26%, respectively. Prevalence in the 2007 Gulf Coast sample set using an assay with a sensitivity of 4 CFU g−1 of soil was 63/0%. Individual transect-set data indicate a positive relation between occurrences of species and soil moisture or soil constituents (i.e., Zn and Cu content). The 2005 New Orleans post-Katrina data indicated that B. anthracis is readily detectable in Gulf Coast soils following flood events. The data also indicated that occurrence, as it relates to soil chemistry, may be confounded by flood-induced dissemination of germinated cells and the mixing of soil constituents for short temporal periods following an event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号