共查询到13条相似文献,搜索用时 71 毫秒
1.
针对目前基于深度学习与高分辨率遥感影像的建筑物提取研究现状,本文提出了一种综合ResNet中的ResBlock残差模块和Attention注意力机制的改进型Unet网络(Res_AttentionUnet),并将其应用于高分辨率遥感影像建筑物提取,有效地提高了建筑物的提取精度。具体优化方法为:在传统的Unet语义分割网络卷积层中加入针对初高级特征加强提取的ResBlock残差模块,并在网络阶跃连接部分加入Attention注意力机制模块。其中,ResBlock残差模块使卷积后的特征图获取更多的底层信息,增强卷积结构的鲁棒性,从而防止欠拟合;Attention注意力机制可增强对建筑物区域像素的特征学习,使特征提取更完善,从而提高建筑物提取的准确率。本研究采用武汉大学季顺平团队提供的开放数据集(WHU Building Dataset)作为实验数据,并从中选取3个具有不同建筑物特征和代表性的实验区域,然后分别对不同实验区域进行预处理(包括滑动裁剪和图像增强等),最后分别使用Unet、ResUnet、AttentionUnet和Res_AttentionUnet 4种不同的网络模型对3个不同实验区进行建筑物提取实验,并对实验结果进行交叉对比分析。实验结果表明,与其他3种网络相比,本文所提出的Res_AttentionUnet在基于高分辨率遥感影像的建筑物提取中具有更高的精度,平均提取精度达到95.81%,相较于原始Unet网络提升17.94%,同时相较于仅加入残差模块的Unet网络(ResUnet)提升2.19%,能够显著地提升高分辨率遥感影像中建筑物提取的效果。 相似文献
2.
基于高分辨率遥感影像的建筑物提取具有重要的理论与实际应用价值,深度学习因其优异的深层特征提取能力,已经成为高分影像提取建筑物的主流方法之一。本文在改进深度学习网络结构的基础上,结合最小外接矩形与Hausdorff距离概念,对建筑物提取方法进行改进。本文主要改进内容为:① 基于Unet网络结构,利用金字塔池化模块 (Pyramid Pooling Module, PPM )的多尺度场景解析特点,残差模块(Residual Block, RB)的特征提取能力以及卷积块注意力模块(Convolutional Block Attention Module, CBAM)对空间信息和通道信息的平衡能力。将金字塔池化、残差结构以及卷积块注意力模块引入到Unet模型中,建立PRCUnet模型。PRCUnet模型更关注语义信息和细节信息,弥补Unet对小目标检测的欠缺;② 基于最小外接矩形与Hausdorff距离,改进建筑物轮廓优化算法,提高模型的泛化能力。实验表明,本文的建筑物提取方法在测试集上准确率、IoU、召回率均达到0.85以上,精度显著优于Unet模型,提取出的建筑物精度更高,对小尺度及不规则的建筑物有较好的提取效果,优化后的建筑物轮廓更接近真实的建筑物边界。 相似文献
3.
自动提取城市建筑物对城市规划、防灾避险等行业应用具有重要意义,当前利用高空间分辨率遥感影像进行建筑物提取的卷积神经网络在网络结构和损失函数上都存在提升的空间。本研究提出一种卷积神经网络SE-Unet,以U-Net网络结构为基础,在编码器内使用特征压缩激活模块增加网络特征学习能力,在解码器中复用编码器中相应尺度的特征实现空间信息的恢复;并使用dice和交叉熵函数复合的损失函数进行训练,减轻了建筑物提取任务中的样本不平衡问题。实验采用了Massachusetts建筑物数据集,和SegNet、LinkNet、U-Net等模型进行对比,实验中SE-Unet在准确度、召回率、F1分数和总体精度 4项精度指标中表现最优,分别达到0.8704、0.8496、0.8599、0.9472,在测试影像中对大小各异和形状不规则的建筑物具有更好的识别效果。 相似文献
4.
高分辨率遥感影像中,道路光谱信息丰富,且空间几何结构更清晰。但是,基于高分遥感影像的道路提取面临道路尺寸变化大、容易受树木、建筑物及阴影遮挡等因素影响,导致提取结果不完整。此外,高分遥感影像中同物异谱和异物同谱现象较为严重,从而影响道路提取结果连续性及细小道路信息完整性,而且难以区分道路和非道路不透水层。因此,本文提出基于双注意力残差网络的道路提取模型DARNet,利用深度编码网络,获取细粒度高阶语义信息,增强网络对细小道路的提取能力,通过嵌入串联式通道-空间双重注意力模块,获取道路特征图逐通道的全局语义信息,实现道路特征的高效表达及多尺度道路信息的深层融合,增强阴影和遮挡环境下网络模型的鲁棒性,改善道路提取细节缺失现象,实现复杂环境下高效、准确的道路自动化提取。本文在3个实验数据集对DARNet和DLinkNet、DeepLabV3+等5个对比模型进行对比试验和定量评估,结果表明,本文DARNet模型的F1分别为77.92%、67.88%和80.37%,高于对比模型。此外,定性比较表明,本文提出模型可以有效克服由于物体阴影、遮挡和高分影像光谱变化导致道路提取不准确与不完整问题,改善细... 相似文献
5.
近年来,城市发展快速,大量人口奔向城市工作生活,城市建筑物的数量有如雨后春笋般扩张,需要合理地规划城市土地资源,遏制违规乱建现象,因此基于高分辨率遥感影像,对建筑物进行准确提取,对城市规划和管理有着重要辅助作用.本文基于U-Net网络模型,使用美国马萨诸塞州建筑物数据集,对网络模型结构进行探究,提出了一种激活函数为EL... 相似文献
6.
高分辨率遥感影像在地面自动目标提取中得到了广泛应用,然而利用传统算法,很难高精度地进行实时的建筑物屋顶绘图。本文使用深度学习方法探讨建筑物屋顶分割,由于卷积运算对形变、旋转、光照条件的不敏感,设计了一种用于建筑物屋顶提取的深度卷积神经网络,提出的网络为级联式全卷积神经网络,在深度卷积神经网络的设计中使用了特征复用和特征增强,实现建筑物的自动精确提取。以美国马萨诸塞州建筑物数据集为基础的实验结果表明,本文提出的网络结构取得了92.3%的总体预测精度,和其他方法相比,本文提出的方法具有更高的精度 相似文献
7.
针对高分辨率遥感影像背景复杂,道路提取容易受阴影、建筑物和铁路等背景信息干扰的问题,提出一种带有轻量级双注意力和特征补偿机制的DAFCResUnet模型。该模型在ResUnet的基础上,通过增加轻量级的双注意力和特征补偿模块实现模型在性能和时空复杂度上的平衡。其中,双注意力模块可以增强模型的特征提取能力,特征补偿模块可以融合网络中来自深浅层的道路特征。在DeepGlobe和GF-2道路数据集上的实验结果表明,DAFCResUnet模型的IoU和F1-score可以达到0.6713、0.8033和0.7402、0.8507,模型的整体精度优于U-Net、ResUnet和VNet模型。与U-Net和ResUnet模型相比,DAFCResUnet模型仅增加了少量的计算量和参数量,但IoU和F1-score均有较大幅度的提高;与VNet模型相比,DAFCResUnet模型在计算量和参数量远低于VNet的情况下取得了更高的精度,模型在精度和时空复杂度两方面均有优势。相比其他对比模型,DAFCResUnet模型具有更强的特征提取和抗干扰能力,能更好解决道路上的干扰物、与道路特征相似地物、树荫或阴影... 相似文献
8.
在高分辨率遥感影像中提取建筑物轮廓是地区基础建设信息统计的一项重要任务。适应性较强的深度学习方法已在建筑物提取研究中取得较大进展,受网络模型对影像特征表达的局限性,存在局部建筑轮廓边缘模糊的问题。本研究提出一种基于注意力的U型特征金字塔网络(AFP-Net)可以聚焦高分遥感影像中不同形态的建筑物结构,实现建筑物轮廓的高效提取。AFP-Net模型通过基于网格的注意力阀门Attention Gates模块抑制输入影像中的无关区域,凸出影像中建筑物的显性特征;通过特征金字塔注意力Feature Pyramid Attention模块增加高维特征图的感受野,减少采样中的细节损失。基于WHU建筑物数据集训练优化AFP-Net模型,测试结果表明AFP-Net模型能够较清晰地识别出建筑物轮廓,在预测性能上有更好的目视效果,在测试结果的总体精度和交并比上较U-Net模型分别提高0.67%和1.34%。结果表明,AFP-Net模型实现了高分遥感影像中建筑物提取的结果精度及预测性能的有效提升。 相似文献
9.
高质量的公路网信息在区域经济发展、灾害应急管理和土地规划中发挥着重要作用。本文提出一种基于改进U-Net(u-shaped network)模型的高分影像公路线路提取方法。首先,从功能、路线设计、分级标准和构造及横断面四个方面剖析公路线路特征,厘清公路与道路的区别;然后,联合通道与空间注意力模块,提出了一种改进的U-Net网络模型;最后,以重庆市南岸区和巴南区为研究区,建立数据集并进行公路线路信息提取实验。结果表明,与已有方法相比,精确度、F1分数、IoU指标有明显提升。本文方法在高分辨率影像提取公路信息方面具有可行性与有效性。 相似文献
10.
从高空间分辨率图像(HSRI)中提取建筑物信息在遥感应用领域具有重要意义。然而,由于遥感影像中的建筑物尺度变化大、背景复杂和外观变化大等因素,从HSRI中自动提取建筑物仍然是一项具有挑战性的任务。特别是从影像中同时提取小型建筑物群和具有精确边界的大型建筑物时,难度更大。为解决这些问题,本文提出了一种端到端的编码器-解码器神经网络模型,用于从HSRI中自动提取建筑物。所设计的网络称为MAEU-CNN(Multiscale Feature Enhanced U-shaped CNN with Attention Block and Edge Constraint)。首先,在设计的网络编码部分加入多尺度特征融合(MFF)模块,使网络能够更好地聚集多个尺度特征。然后,在编码器和解码器部分之间添加了多尺度特征增强模块(MFEF),以获得不同尺寸的感受野,用于获取更多的多尺度上下文信息。在跳跃连接部分引入双重注意机制,自适应地选择具有代表性的特征图用于提取建筑物。最后,为了进一步解决MAEU-CNN中由于池化及卷积操作导致的分割结果边界模糊的问题,引入多任务学习机制,将建筑物的边界几何信息融入网络... 相似文献
11.
耕地地块作为精准农业的重要支撑,现有地块边界大多依靠人工勾绘。随着遥感技术的发展,基于遥感影像自动提取耕地地块成为研究主要方向,其中基于深度学习的方法能够克服传统检测方法难以适应复杂场景的局限而被广泛使用,但现有检测方法仍存在问题,基于深度卷积模型直接识别耕地区域会丢失内部边界、而基于边缘检测模型识别耕地边界时则会同时得到大量无关边界;此外,现有的基于阈值提取地块的策略所提取的地块不够规整,存在内陷的问题。针对上述问题,本研究提出一种基于深度卷积网络和分水岭分割的耕地地块提取方法,从信息检测和地块提取两方面进行改进:(1)将耕地边界视作一种地物类别,在深度卷积网络中进行类别概率检测,帮助实现对耕地边界的语义识别。(2)基于改进后的D-LinknetXt网络进行检测,其网络架构适合于对耕地边界这类线性目标的提取,同时更换原始D-Linknet网络的残差单元,帮助提高了网络的特征提取能力。(3)基于分水岭分割对耕地地块进行提取,利用了区域分割方法获取边界的封闭性,并且这种以区域为单元进行分割并合并的方式,解决了原有方法在像元尺度上基于阈值提取所遇到的提取地块存在内陷的问题,使地块更规整准确... 相似文献
12.
随着村镇经济建设发展,生活垃圾和工业固体废弃物造成的污染问题日益突出,已经成为制约新农村建设发展和生态文明建设的关键问题,而目前针对乡镇非正规固体废弃物的调查与统计主要依赖全国各乡镇相关部门逐级调查上报,工作量较大。本文基于高分辨率遥感影像,将深度学习模型和条件随机场模型相结合引入到乡镇固体废弃物的提取研究中,探索一种基于深度卷积神经网络的乡镇固体废弃物提取模型。由于固体废弃物在影像上表现为面积小,分布破碎等特点,为了提高工作效率,将模型特分为识别和提取2个部分:① 通过全连接卷积网络(CNN)对固体废弃物进行快速识别判断,筛选感兴趣区域影像块;② 在传统的全卷积神经网络(FCN)的基础上加入条件随机场模型(CRF)提取固体废弃物边界,提高整体分割精度。根据安徽、山西等地区相关部门上报固体废弃物堆放点以及住房与城乡建设部城乡规划管理中心进行野外检查的结果,实验最终识别精度达到86.87%以上;形状提取精度为89.84%,Kappa系数为0.7851,识别与提取精度均优于传统分类方法。同时,该方法已经逐步应用于住房和城乡建设部有关成都、兰州、河北等部分乡镇非正规固体废弃物的核查工作,取得了较为满意的结果。 相似文献
13.
应用神经网络建立水下拖曳体轨迹姿态水动力控制模型 总被引:2,自引:0,他引:2
以拖曳体的拖曳水池样机试验取得试验数据作为训练样本,采用LMBP算法,建立基于神经网络理论构建的可控制水下拖曳体轨迹与姿态水动力控制数值模型,并进行LMBP模型仿真检验。结果表明,利用所建全的神经网络模型对拖曳体在一定控制动作下的水动力响应预报是令人满意的。 相似文献