首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Complex experimental research of thermal properties of oil-contaminated frozen soils was carried out. On the basis of the obtained results the influence of the various factors connected with oil pollution on heat transfer in frozen soils was analyzed. And the model of heat transfer in frozen soils was offered.  相似文献   

2.
Cryogenic structure (patterns made by ice inclusions) in seasonally frozen and permafrost-af-fected soils result from ice formation during freezing. Analysis of cryogenic structures in soils is essential to our understanding of the cryogenic processes in soils and to formulating land use management interpretations. When soils freeze, the freezing front moves downward and attracts water moving upward resulting in mainly horizontal lenticular ice formation. Platy and lenticular soil structures form between ice lenses in upper active layer. The reticular soil structure usually forms above the permafrost table caused by freeze-back of the permafrost. The upward freeze-back resulted in platy soil structure and the volume changes following the annual freeze-thaw cycle resulted in vertical cracks. The combined result is an ice-net formation with mineral soils embedded in the ice net. The upper permafrost layer that used to be a part of the active layer has an ice content exceeding 50% due to repeated freeze-thaw cycles over time. The mineral soils appear in blocks embedded in an ice matrix. The permafrost layer that never experienced the freeze-thaw cycle often consists of alternate layers of thin ice lens and frozen soils with extreme hard consistence and has relatively lower ice content than the ice-rich layer of the upper permafrost. Ice contents and thaw settling potentials associated with each cryogenic structure should be considered in engineering and land use interpretations.  相似文献   

3.
冻土地区三角形块石路基与水平块石路基的保冷效果研究   总被引:2,自引:2,他引:0  
姜凡  刘石  王海刚  陈焕倬 《冰川冻土》2004,26(Z1):90-96
Time varying temperatures and pore-air velocities in two gravel embankments, horizontal and triangular gravel embankments, are studied using the "Rock-Block model" and the results are visualized in the form of isotherms and velocity vectors for different times of the year. Simulation results show that for both the two embankments there is a counter-clockwise rotation of pore-air extending throughout most of the embankment during winter months, whereas in summer the pore-air rotation changes to the opposite. The pore-air velocities in the triangle gravel embankment are somewhat higher than those obtained from the horizontal gravel embankment. The stronger convection in winter enhances the upward transport of heat out of the triangle gravel embankment, thus having more apparent cooling effect than the horizontal gravel embankment. During summer months, the pore-air velocities are nearly the same for both the two embankments. The results of the present study show that though the two gravel embankments have the effect of cooling the permafrost beneath, the temperature fields in the triangle gravel embankment are a little lower and more stable compared with those gotten from the horizontal gravel embankment, showing that the triangle gravel embankment has more apparent cooling effect than the horizontal one.  相似文献   

4.
全晓娟  李宁  苏波  李国玉 《冰川冻土》2004,26(Z1):115-120
In permafrost regions, many methods about active cooling embankment are put forward, one of these representations is ventilated embankment, its cooling effect is the result of the air convection in the duct, and this leads to reducing the annual average ground temperature. The present work in this article is to determine the boundary conditions of the ventilated embankment and natural ground in numerical work. There are several effects which influence boundary conditions, they are: radiation, evaporation,phase change, convection and embankment material etc. Radiation and convection are the main effects in those. We mainly consider sun radiation in this article. The added-surface effect in ventilated embankment lowers its temperature, so the temperature on the wall of the ventilated embankment is different from the temperature in atmosphere. There are two methods in determining the surface temperature, experimental method and experiential method. Detailed research is discussed in the article.  相似文献   

5.
The paper features the results of field measurements and numerical research of embankment behaviour in permafrost soils of Transbaikalia railway section following implementation of preventive works to eliminate action of heaving forces on the main area of embankment subgrade.  相似文献   

6.
A comprehensive grasp of the research status of tensile strength of frozen soil is the basis for further research. Firstly,the typical methods that can be used to test the tensile strength of frozen soil are introduced,and the test conditions,sample forms and stress mechanism of different test methods are described in detail. The advantages and disadvantages of typical tensile strength test methods are compared and listed. Secondly,the research work and shortcomings based on different test methods are summarized. Then,the latest research progress of the influence of temperature,water content,loading(deformation)rate,soil quality and sample size on the change law of frozen soil tensile strength is comprehensively analyzed. Finally,it is proposed to develop and improve the research method and system of frozen soil tensile strength,and increase the testing research of warm frozen soil tensile strength,so as to obtain the prospect of more accurately simulating the tensile failure behavior of frozen soil. It is pointed out that the internal cause of the formation of the tensile strength and the tensile failure mechanism of frozen soil should be thoroughly revealed by combining the research methods of microstructure and digital image technology of frozen soil. Based on the multi-factor test,a more perfect prediction method of frozen soil tensile strength is explored. Meanwhile,expand the in-situ test research on the tensile strength of frozen soil,and strengthen the parallel research ideas of indoor and outdoor double tracks. Through the analysis of the research status and development trend at home and abroad,it provides reference and guidance for the experimental study of frozen soil tensile strength,the improvement of theoretical model of frost heave,geotechnical engineering design in cold regions and artificial freezing reinforcement engineering. © 2022 Science Press (China).  相似文献   

7.
青藏铁路冻土路基沉降变形现场试验研究   总被引:3,自引:0,他引:3  
Based on the field data of ground temperature and roadway settlement observed during the construction of the experimental embankments over permafrost along the Qinghai-Tibetan Railway, this paper discusses the differences of frost process on the roadway surface from that on the natural ground surface, the changes of permafrost table under the roadway embankment, and the peculiarities of roadway settlement. Analyses of the test results show : 1) The differences of the freezing indexes between the roadway surfaces and the natural ground surfaces are less than those of the thawing indexes for all the test sections; 2) Since the measures of permafrost protection were taken, the permafrost tables under the embankments have raised after the roadway was constructed. The minimum is about 0.4 m and the maximum is 1.2 m; 3) the settlements of the roadway are mainly from the compression and creep of the icerich frozen soils under the original permafrost tables and the maximum has reached 6 ~ 8 cm during the first year after the embankments were constructed. Moreover, concerning the processes of roadway settlement, the deformation of the embankments has no obvious trend of attenuation at present. Especially,for the roadway with high embankments, the settlement may reach a remarkable value and much consideration must be given for this problem.  相似文献   

8.
The stability of railway subgrade in permafrost regions is crucial to the safety of railway operation. In this paper, we first analyze the main factors influencing the stability of frozen subgrade. Then,we build an experimental equipment in which regulation-tubes are arranged axially in subgrade and arranged slantways at the foot of slopes, and make the model experiments on maintaining the stability of frozen subgrade by collecting- controlling cold energy. The experiments include two groups. One is maintaining the stability by collecting-controlling natural cold energy in winter, and another is maintaining the stability by collecting-controliing natural cold energy in winter and artificial cold energy in summer. Finally, we obtain the behavior of temperature fields in the subgrade during the experiments,which establishes basis for further study on the subgrade stability and on the feasibility of rushing to deal with freezing damage of frozen subgrade.  相似文献   

9.
Abstract: Soil water retention curves (SWRCs) provide an important means of describing the response of unsaturated soils during drying / wetting processes in terms of variations of degree of saturation, water content or void ratio with suction. A key consideration in generating these curves is how to measure the suction. Frequently the filter paper technique is adopted, especially when high suctions are developed, e.g. with plastic clays. As each measurement takes at least a week with this technique, it can take months or years to generate a full SWRC in drying and wetting. Developments in laboratory tensiometers now allow matrix suctions up to about 1.5 MPa to be measured. With such a device it is possible to develop SWRCs for granular soils such as silts and clays in hours or days by continuous measurement. This paper describes an experimental set-up that was developed to measure changes in volume, water content and matrix suction during drying of three granular soils. Limitations of the apparatus and usefulness of the curves are discussed.  相似文献   

10.
Aiming at the stabilization of Qinghai-Tibetan Railway embankment during its construction and run, the method using tilt pipes to keep the permafrost embankment stabilization is put forward in the paper. By gathering natural cold energy in the winter and release it in the summer the tilt pipes can keep the permafrost embankment stabilizing. The temperature fields of the embankment and the stratums below are studied according to the condition of pipes diameter 250mm, length 7. 0m and tilt angle 30°,45°, 60° until the railway working for 20 years. It is shown that the embankment field using tilt pipes will eliminate the thawing core and come into subzero temperature phase ahead of 9 years compared with the original model. Different tilt angles have different efforts on the embankment and stratums, synthesis analysis of thermal income and expenses of the embankment and stratums should be carried out  相似文献   

11.
针对透壁通风管路堤中透壁通风管管壁与空气之间的对流换热和土体水分通过管壁小孔的蒸发散热机制,分析了开孔率、风速及含水率等因素对透壁通风管管壁对流换热和水分蒸发散热的影响,并具体给出了管壁对流换热系数和蒸发散热系数的计算公式。冬季路堤由于冻土层未冻水含量较小而使管壁小孔的水分蒸发散热较弱,路堤总的降温效果主要由管壁对流换热效应控制,而暖季通风管内空气与管壁的对流换热效应可使路堤土体增温,同时,由于通风管周围融土的未冻水含量较大,而使得通过管壁小孔的水分蒸发散热较强,可部分或全部抵消对流换热引起的增温效应,而有利于路堤的稳定。  相似文献   

12.
基于修正拉格朗日(U.L)描述下的大变形固结理论和考虑相变作用的温度场得到大变形融化固结理论,对不同路堤高度下填土路基温度场和融沉变形进行研究. 结果表明:高温冻土区合理高度的路堤在5~10 a内使冻土上限略微抬升,但冻土有明显升温. 冻土上限在未来的5~10 a后会急剧下降,且路堤高度越小,下降量越大. 与小变形融化固结理论相比,大变形融化固结理论预测高含量冻土融沉变形的精度更高. 融沉量与路堤高度成正比,且随着时间的增长,融沉变形呈阶梯型发展,路堤越高,阶梯现象越显著. 定义融沉量与路堤高度之比为沉降比,研究发现路堤越低,其沉降比越大,且随时间线性增长. 沉降比是冻土融深增量的单值函数,与路堤高度无关,通过沉降比函数可以快速而实用的求出融沉变形量.  相似文献   

13.
青藏铁路路基下高温-高含冰量冻土旁压试验研究   总被引:2,自引:0,他引:2  
为研究青藏铁路路基下高温-高含冰量冻土的力学性质,在青藏铁路北麓河试验段开展一系列旁压强度试验。试验研究表明:路基的增加引起路基下多年冻土温度升高,未冻水含量增加,最终导致冻土旁压临塑压力Pf下降31 %,旁压极限压力Pl下降44 %,旁压剪切模量Gm下降80 %。对于高温冻结黏土,富冰冻土和饱冰冻土Gm对温度变化的敏感性高于含土冰层;饱冰冻土的Pf和Pl对温度变化的敏感性高于富冰冻土和含土冰层。  相似文献   

14.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

15.
The paper presents a short survey of large Soviet experience in the field of artificial freezing and cooling of soils. Some examples of artificial ground freezing used for the development of mineral deposits, in mining and coal industry, in subway construction are given.

A special field of the cold application in the construction is the cooling of soils which have already had the negative temperature. This engineering method is applied in permafrost regions for improving the strengthening properties of the weak soils used as the bases of structures.

In the USSR this method is used successfully for improving the bearing capacity of frozen soils and for the creation of frozen waterproof screens in hydrotechnical engineering as well. Some examples of the employment of this method are also given.  相似文献   


16.
青藏铁路全线开通运营以来,对处于高寒地区的永久冻土隧道之一的风火山隧道的质量状态首次进行了无损检测。风火山隧道处于高寒永久冻土区,隧道全部处于冻岩中,两端洞口主要为砂岩与泥岩,并且为富冰冻土。受到季节性冻融的影响,隧道病害比较突出,主要表现为衬砌裂缝,漏水涌水,衬砌酥松剥落。为了准确地掌握风火山隧道衬砌结构质量状态,本文首次应用于风火山隧道衬砌结构的质量检测。该检测设备一改传统破坏式的检测方法,具有快速、简捷、无损、灵活的特点。通过对现场数据处理分析,可以精确探测衬砌厚度,查明衬砌背后存在的空洞和回填不密实区域。检测结果表明,隧道在高寒恶劣环境中,衬砌总体外观质量尚好,但是在两端洞口段有渗水现象;衬砌背后空洞缺陷等级为严重地段测线长度为20m,等级为极严重地段测线长度为98m;衬砌背后回填不密实缺陷等级为严重地段测线长度为41m,等级为极严重地段测线长度为33m。检测结果与实际病害情况基本相符。  相似文献   

17.
为了探究新型管幕冻结法是否能够对河堤进行有效的防渗加固,利用有限元软件基于温度场对新型管幕冻结法在防渗固堤中的应用展开研究,设置4条分析路径,对冻土帷幕的基本情况和各路径的冻结效果特征进行分析。结果表明:冻土帷幕自冻结管处形成后向周围蔓延,从第8天起,0.5 m深度上侧的冻土帷幕发展开始“加速”,相较于另一侧冻土帷幕,其发展更快、强度更高、冻结更密实。冻结完成后,0.5 m深度上侧冻土帷幕均匀密实,坡面上温度最低可降至?25.34℃,各观测点温度均在?24℃以下,最终冻结温度和降温速率均呈现出“M”形特征;堤面最快可在第11天开始冻结,在第14天冻土覆盖整个堤面,土体最终冻结温度与深度之间呈指数函数关系。管幕钢管边界冻结差异较大,最高温点与最低温点温度分别为?24.94℃和?2.89℃,相差约22℃,冻土帷幕最小厚度约0.78 m。所得结果可为将来的相关实际工程提供参考依据。   相似文献   

18.
高志华  石坚  张淑娟  罗丽娟 《冰川冻土》2009,31(6):1143-1149
冻土对温度敏感且性质易变, 而高含冰量冻土的性质更是极不稳定, 针对不同温度、 不同围压下50%的高含冰量重塑冻土进行了动三轴试验.结果表明: 动强度随着振次的增大线性减小, 和温度呈二次变化关系, 随着负温的增大而增大, 围压对动强度影响不大;残余轴应变随着振次的增大而增大, 呈幂函数的关系;随负温的增大而变小, 围压对残余应变影响也不大. 根据这些影响因素, 分别给出了高含冰量冻土的动强度和残余应变的计算公式, 这些结果可为该类土的动力特性研究提供参考.  相似文献   

19.
对吉林省高等级低路堤公路填土高度与最大冻深进行了调研,该地区低路堤填土高度为0.0~2.2 m,钻孔数据表明路基最大冻深为距路表1.6~2.4 m。选取3种不同塑性指数的路基土,采用正交表L16(45)进行了试验设计,应用静力成型法,使得土体在设定的含水率和压实度的水平下成型,并经历不同的冻融循环次数后,分别测试土体的无侧限抗压回弹模量。试验结果表明:1)对同一种土质,影响因素的大小排序为:含水率>冻融次数>压实度。2)随着含水率增大,土基强度接近线性减小;随着冻融次数的增加,土基强度逐渐减小,前2次冻融影响较大,之后幅度变小趋于稳定;随着压实度的增大,土基强度逐渐增大,增大幅度较小。3)采用指数函数对3种土的室内试验数据进行多元非线性拟合,拟合结果较好。  相似文献   

20.
土工格室加筋垫层路堤破坏模式和稳定性评价   总被引:2,自引:1,他引:1       下载免费PDF全文
采用土工格室加筋垫层提高软土地基上填方路堤的稳定性已得到认可,但其破坏模式和稳定性分析方法仍未取得共识。作者通过室内物理模拟试验,识别软土地基上无筋垫层路堤、土工格栅加筋垫层路堤和土工格室加筋垫层路堤的失效模式,并在此基础上探讨土工格室加筋垫层路堤的稳定性和临界填筑高度分析方法。研究结果表明:软土地基上无筋垫层路堤和土工格栅加筋垫层路堤发生穿过垫层的圆弧滑动破坏;土工格室加筋垫层路堤呈整体破坏模式,滑动面虽呈似圆弧状但未穿过加筋垫层,破裂面在软土地基中形成和发展,而且位置更深。在识别破坏模式的基础上,通过土工格室加筋垫层的工作机理分析,提出了软土地基上土工格室加筋垫层路堤稳定性和临界填筑高度分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号