首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some structures may be very massive and may have to be located on relatively soft soil. In such cases, the soil adjacent to the structure behaves in a non-linear fashion and affects the response of the structure to the dynamic loading. An approximate hybrid approach to analyse soil–structure systems accounting for soil non-linearities has been developed in this paper. The approach combines the consistent infinitesimal finite-element cell method (CIFECM) and the finite-element method (FEM). The CIFECM is employed to model the non-linear (near-field) zone of the soil supporting the structure as a series of bounded media. The material properties of the bounded media are selected so that they are compatible with the average effective strains over the whole bounded medium during the excitation. The linear zone of soil away from the foundation, the far-field, is modelled as an unbounded medium using the CIFECM for unbounded media. The structure itself is represented by the FEM. The proposed method is used to model the dynamic response of a one-mass structure and a TV-tower supported on a homogenous stratum and excited by an earthquake. It was found that the secondary soil non-linearity might increase or decrease the base forces of tall slender structures depending on the type of structure, frequency content of the input motion and the dynamic properties of the near-field soil.  相似文献   

2.
Focusing on low-rise steel buildings supported by shallow isolated foundations on dense silty sand, this study demonstrates the effect of uncertainty in soil parameters on seismic response of structures. Considering a set of 20 ground motions representing 10% in 50 years hazard level and concentrating on peak base moment, base shear and interstory drift as the demand variables of interest, it is found that uncertainty in soil parameters may result in significant response variability of the structures, especially when vertical factor of safety is low and the structure is relatively stiff. Uncertainty in friction angle results in significant variability of the peak base moment and base shear, while peak interstory drift ratio is found to be virtually unaffected by uncertainty in soil parameters. It is also found that a linear soil–structure-interaction (SSI) model will not be able to predict such response variability under these set of ground motions.  相似文献   

3.
Current practice usually pays little attention to the effect of soil–structure interaction (SSI) on seismic analysis and design of bridges. The objective of this research study is to assess the significance of SSI on the modal with geometric stiffness and seismic response of a bridge with integral abutments that has been constructed using a new bridge system technology. Emphasis is placed on integral abutment behavior, since abutments together with piers are the most critical elements in securing the integrity of bridge superstructures during earthquakes. Comparison is made between analytical results and field measurements in order to establish the accuracy of the superstructure–abutment model. Sensitivity studies are conducted to investigate the effects of foundation stiffness on the overall dynamic and seismic response of the new bridge system.  相似文献   

4.
Main purpose of this study is to evaluate the dynamic behavior of fluid–rectangular tank–soil/foundation system with a simple and fast seismic analysis procedure. In this procedure, interaction effects are presented by Housner's two mass approximations for fluid and the cone model for soil/foundation system. This approach can determine; displacement at the height of the impulsive mass, the sloshing displacement and base forces for the soil/foundation system conditions including embedment and incompressible soil cases. Models and equations for proposed method were briefly explained for different tank–soil/foundation system combinations. By means of changing soil/foundation conditions, some comparisons are made on base forces and sloshing responses for the cases of embedment and no embedment. The results showed that the displacements and base shear forces generally decreased, with decreasing soil stiffness. However, embedment, wall flexibility, and soil–structure interaction (SSI) did not considerably affect the sloshing displacement.  相似文献   

5.
The paper provides state-of-the-art information on the following aspects of seismic analysis and design of spread footings supporting bridge piers: (1) obtaining the dynamic stiffness (“springs” and “dashpots”) of the foundation; (2) computing the kinematic response; (3) determining the conditions under which foundation–soil compliance must be incorporated in dynamic structural analysis; (4) assessing the importance of properly modeling the effect of embedment; (5) elucidating the conditions under which the effect of radiation damping is significant; (6) comparing the relative importance between kinematic and inertial response. The paper compiles an extensive set of graphs and tables for stiffness and damping in all modes of vibration (swaying, rocking, torsion), for a variety of soil conditions and foundation geometries. Simplified expressions for computing kinematic response (both in translation and rotation) are provided. Special issues such as presence of rock at shallow depths, the contribution of foundation sidewalls, soil inhomogeneity and inelasticity, are also discussed. The paper concludes with parametric studies on the seismic response of bridge bents on embedded footings in layered soil. Results are presented (in frequency and time domains) for accelerations and displacements of bridge and footing, while potential errors from some frequently employed simplifications are illustrated.  相似文献   

6.
Foundation impedance functions provide a simple means to account for soil–structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.  相似文献   

7.
The dynamic response and seismic performance of bridges may be appreciably affected by numerous contributing factors, with soil–structure interaction being the dominant exogenous influence. The most familiar form is the so-called soil–pile interaction, but embankment–abutment interaction is also documented through field observations and analytical investigations, particularly evident in integral R.C. bridges. Recent studies have shown that this form of interaction may significantly alter the bridge response and should be taken into account during design and assessment, especially in the case of typical highway overcrossings that have abutments supported on earth embankments. In light of this emerging problem and in order to facilitate quantitative estimates of the interaction effects, the question of appropriate modeling and seismic assessment of R.C. integral bridges is the main object of the present paper. Based on already established procedures to account for soil–structure interaction, a new approach is proposed to model the contribution of the embankment, the bent and the abutments to the overall bridge response. Furthermore, the capacity curve of the entire bridge system is evaluated through the implementation of Incremental Dynamic Analysis (IDA), therefore allowing for seismic assessment of the complex superstructure–foundation system with well established displacement based procedures. Using as a benchmark case two typical instrumented U.S. highway bridges located in California, the proposed method is implemented and provided results from this analysis are correlated successfully with available field data. Results obtained from the analysis indicate excessive displacement demands for the entire bridge–embankment system owing to the embankment contribution and the soil degradation under increasing shear strains. Furthermore, seismic performance is strongly related to the central bent deformation capacity, with soil–pile interaction effects being of critical importance.  相似文献   

8.
Studies of structural responses and damage to high-frequency blast motion are very limited. Current practice uses some empirical allowable ground vibration limits in assessing structural performance. These empirical limits overlook the physical parameters that govern structural response and damage, such as the ground motion characteristics and inherent structural properties. This paper studies the response of RC frame structures to numerically simulated underground blast-induced ground motions. The structural response and damage characteristics of frame structures to ground motions of different frequencies are investigated first. The effects of blast ground motion spatial variations and soil–structure interaction on structural responses are also studied. A suitable discrete model that gives accurate response prediction is determined. A damage index defined based on the accumulated plastic hinge rotation is used to predict structural damage level. Numerical results indicated that both the low structural vibration modes (global modes) and the first elemental vibration mode (local) might govern the dynamic structural responses depending on the ground motion frequency and structural response parameters under consideration. Both ground motion spatial variations and soil–structure interaction effects are prominent. Neglecting them might yield inaccurate structural response prediction. The overall structural response and damage are highly ground motion frequency dependent. Numerical results of structural damage are also compared with some test results obtained in a previous study and with code specifications. Discussions on the adequacy of the code allowable ground vibration limits on RC frame structures are also made.  相似文献   

9.
In this study, A time-domain seismic response analysis method and a calculation model of the underground structure that can realize the input of seismic P, SV and Rayleigh waves are established, based on the viscoelastic artificial boundary elements and the boundary substructure method for seismic wave input. After verifying the calculation accuracy, a comparative study on seismic response of a shallow-buried, double-deck, double-span subway station structure under incident P, SV and Rayleigh waves is conducted. The research results show that there are certain differences in the cross-sectional internal force distribution characteristics of underground structures under different types of seismic waves. The research results show that there are certain differences in the internal force distribution characteristics of underground structures under different types of seismic waves. At the bottom of the side wall, the top and bottom of the center pillar of the underground structure, the section bending moments of the underground structure under the incidences of SV wave and Rayleigh wave are relatively close, and are significantly larger than the calculation result under the incidence of P wave. At the center of the side wall and the top floor of the structure, the peak value of the cross-sectional internal force under the incident Rayleigh wave is larger than the calculation result under SV wave. In addition, the floor of the underground structure under Rayleigh waves vibrates in both the horizontal and vertical directions, and the magnification effect in the vertical direction is more significant. Considering that the current seismic research of underground structures mainly considers the effect of body waves such as the shear waves, sufficient attention should be paid to the incidence of Rayleigh waves in the future seismic design of shallow underground structures.  相似文献   

10.
An approach is formulated for the linear analysis of three-dimensional dynamic soil–structure interaction of asymmetric buildings in the time domain, in order to evaluate the seismic response behaviour of torsionally coupled buildings. The asymmetric building is idealized as a single-storey three-dimensional system resting on different soil conditions. The soil beneath the superstructure is modeled as linear elastic solid elements. The contact surface between foundation mat and solid elements of soil is discretised by linear plane interface elements with zero thickness. An interface element is further developed to function between the rigid foundation and soil. As an example, the response of soil–structure interaction of torsionally coupled system under two simultaneous lateral components of El Centro 1940 earthquake records has been evaluated and the effects of base flexibility on the response behaviour of the system are verified.  相似文献   

11.
A boundary element formulation of the substructure deletion method is presented for the seismic analysis of the dynamic cross-interaction between multiple embedded foundations. This approach is particularly suitable for three-dimensional foundations of any arbitrary geometrical shape and spatial location, since it requires only the discretization of the foundations’ surfaces. The surrounding soil is represented by a homogeneous viscoelastic half-space while the foundations are assumed to be rigid and subjected to incoming SH-, P-, and SV-waves arbitrarily inclined in both the horizontal and vertical planes. The proposed methodology is tested for the case of two identical embedded square foundations for different values of the foundations’ embedment and distance. The effects of the cross-interaction are outlined in the components of the impedance matrix and of the foundation input motion. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
A study on the seismic response of massive flexible strip-foundations embedded in layered soils and subjected to seismic excitation is presented. Emphasis is placed on the investigation of the system response with the aid of a boundary element–finite element formulation proper for the treatment of such soil–structure interaction problems. In the formulation, the boundary element method (BEM) is employed to overcome the difficulties that arise from modeling the infinite soil domain, and the finite element method (FEM) is applied to model the embedded massive flexible strip-foundation. The numerical solution for the soil–foundation system is obtained by coupling the FEM with the BEM through compatibility and equilibrium conditions at the soil–foundation and soil layer interfaces. A parametric study is conducted to investigate the effects of foundation stiffness and embedment on the seismic response.  相似文献   

13.
Although railway-generated ground vibrations usually have greater energy levels at lower frequencies, vibrations in the audible range above 20 Hz can nevertheless be relevant for secondary noise problems in buildings. One countermeasure is soil stabilization under the track embankment. While effective at low frequencies, a potential side effect is amplification in some audible bands. Presented here are both experimental and theoretical assessments of the countermeasure in the audible bands. The main innovation is the treatment of an infinite periodic track–ground system, using a transfer matrix approach with a repeating element including the rail, pad, sleeper, and an underlying half-space (ballast and soil). Excitation in this band is attributed to rail and wheel roughness. The model makes successful predictions when the half-space properties are allowed to be frequency-dependent such that the dispersion of the surface wave matches that in the actual layered earth (including ballast and underlying soil layers). The field measurements are also unique in that both before and after evaluation of the countermeasure was possible.  相似文献   

14.
The investigation reported in this paper studies the effects of soil–structure interaction (SSI) on the seismic response and damage of building–foundation systems. A simple structural model is used for conducting a parametric study using a typical record obtained in the soft soil area of Mexico City during the 1985 earthquake. Peak response parameters chosen for this study were the roof displacement relative to the base and the hysteretic energy dissipated by the simple structural model. A damage parameter is also evaluated for investigating the SSI effects on the seismic damage of buildings. The results indicate that in most cases of inelastic response, SSI effects can be evaluated considering the rigid‐base case and the SSI period. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Seismic response of buried pipes in longitudinal direction is studied. The effect of the variation of geotechnical properties of the surrounding soil on the stiffness, mass and damping of the soil is considered. The soil–structure interaction depends on pipe stiffness, joint stiffness, the variation of the soil stiffness and the soil mass and damping. Variations of the properties of the surrounding soil along the pipe are described by the random field theory. A numerical model is developed in order to simulate the effects of the variation of the soil on displacements, bending moments in the pipe and also to carry out a statistical analysis. The influence of different parameters regarding design and safety level of the pipe is conducted.  相似文献   

16.
When analysing the seismic response of pile groups, a vertically‐incident wavefield is usually employed even though it does not necessarily correspond to the worst case scenario. This work aims to study the influences of both the type of seismic body wave and its angle of incidence on the dynamic response of pile foundations. To this end, the formulation of SV, SH and P obliquely‐incident waves is presented and implemented in a frequency‐domain boundary element‐finite element code for the dynamic analysis of pile foundations and piled structures. Results are presented in terms of bending moments at cap level of single piles and 3 × 3 pile groups, both in frequency and in time domains. It is found that, in general, the vertical incidence is not the most unfavourable situation. In particular, obliquely‐incident SV waves with angles of incidence smaller than the critical one, a situation in which the mechanism of propagation of the waves in the soil changes and surface waves appear, yield bending moments much larger than those obtained for vertically‐incident wavefields. It is also shown that the influence of pile‐to‐pile interaction on the kinematic bending moments becomes significant for non‐vertical incidence, especially for P and SV waves. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A set of reinforced concrete structures with gravitational loads and mechanical properties (strength and stiffness) representative of systems designed for earthquake resistance in accordance with current criteria and methods is selected to study the influence of dynamic soil–structure interaction on seismic response, ductility demands and reliability levels. The buildings are considered located at soft soil sites in the Valley of Mexico and subjected to ground motion time histories simulated in accordance with characteristic parameters of the maximum probable earthquake likely to occur during the system's expected life. For the near‐resonance condition the effects of soil–structure interaction on the ductility demands depend mainly on radiation damping. According to the geometry of the structures studied this damping is strongly correlated with the aspect ratio, obtained by dividing the building height by its width. In this way, for structures with aspect ratio greater than 1.4 the storey and global ductility demands increase with respect to those obtained with the same structures but on rigid base, while for structures with aspect ratio less than 1.4 the ductility demands decrease with respect to those for the structures on rigid base. For the cases when the fundamental period of the structure has values very different from the dominant ground period, soil–structure interaction leads in all cases to a reduction of the ductility demands, independently of the aspect ratio. The reliability index β is obtained as a function of the base shear ratio and of the seismic intensity acting on the nonlinear systems subjected to the simulated motions. The resulting reliability functions are very similar for systems on rigid or on flexible foundation, provided that in the latter case the base rotation and the lateral displacement are removed from the total response of the system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper deals with the dynamic response of buildings due to traffic induced wave fields. The response of a two-storey single family dwelling due to the passage of a two-axle truck on a traffic plateau is computed with a model that fully accounts for the dynamic interaction between the soil and the structure. The results of three cases where the structure is founded on a slab foundation, a strip foundation and a box foundation are calculated and a comprehensive analysis of the dynamic structural response is performed. A methodology is also proposed to calculate the structural response, neglecting the effects of dynamic soil–structure interaction. A comparison with the results of calculations where dynamic soil–structure interaction is accounted for shows that a good approximation is obtained in the case of a rigid structure resting on a soft soil.  相似文献   

19.
Recently, several new optimum loading patterns have been proposed by researchers for fixed‐base systems while their adequacy for soil–structure systems has not been evaluated yet. Through intensive dynamic analyses of multistory shear‐building models with soil–structure interaction subjected to a group of 21 artificial earthquakes adjusted to soft soil design spectrum, the adequacy of these optimum patterns is investigated. It is concluded that using these patterns the structures generally achieve near optimum performance in some range of periods. However, their efficiency reduces as soil flexibility increases especially when soil–structure interaction effects are significant. In the present paper, using the uniform distribution of damage over the height of structures, as the criterion, an optimization algorithm for seismic design of elastic soil–structure systems is developed. The effects of fundamental period, number of stories, earthquake excitation, soil flexibility, building aspect ratio, damping ratio and damping model on optimum distribution pattern are investigated. On the basis of 30,240 optimum load patterns derived from numerical simulations and nonlinear statistical regression analyses, a new lateral load pattern for elastic soil–structure systems is proposed. It is a function of the fundamental period of the structure, soil flexibility and structural slenderness ratio. It is shown that the seismic performance of such a structure is superior to those designed by code‐compliant or recently proposed patterns by researchers for fixed‐base structures. Using the proposed load pattern in this study, the designed structures experience up to 40% less structural weight as compared with the code‐compliant or optimum patterns developed based on fixed‐base structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The important effects of bottom sediments on the seismic response of arch dams are studied in this paper. To do so, a three‐dimensional boundary element model is used. It includes the water reservoir as a compressible fluid, the dam and unbounded foundation rock as viscoelastic solids, and the bottom sediment as a two‐phase poroelastic domain with dynamic behaviour described by Biot's equations. Dynamic interaction among all those regions, local topography and travelling wave effects are taken into account. The results obtained show the important influence of sediment compressibility and permeability on the seismic response. The former is associated with a general change of the system response whereas the permeability has a significant influence on damping at resonance peaks. The analysis is carried out in the frequency domain considering time harmonic excitation due to P and S plane waves. The time‐domain results obtained by using the Fourier transform for a given earthquake accelerogram are also shown. The possibility of using simplified models to represent the bottom sediment effects is discussed in the paper. Two alternative models for porous sediment are tested. Simplified models are shown to be able to reproduce the effects of porous sediments except for very high permeability values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号