首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wolff  Richard S. 《Solar physics》1974,34(1):163-172
A large-area high-sensitivity X-ray spectrometer has been constructed and used to measure the 1.8–5.3 Å X-ray emission of the Sun under quiescent conditions. The instrument utilizes Bragg reflection from mosaic graphite crystals. The data indicate that the X-ray emission can best be accounted for by a multitemperature model of the solar atmosphere in which both the over-all corona and active regions contribute to the X-ray spectrum. Theoretical calculations of the X-ray flux of a hot, optically thin plasma have been used to estimate the solar conditions at the time when the measurements were made.  相似文献   

2.
3.
Interhelioprobe (IHP), an analogue to the ESA Solar Orbiter, is the prospective Russian space solar observatory intended for in-situ and remote sensing investigations of the Sun and the inner heliosphere from a heliocentric orbit with the perihelion of about 60 solar radii. One of several instruments on board will be the Bragg crystal spectrometer ChemiX which will measure X-ray spectra from solar corona structures. Analysis of the spectra will allow the determination of the elemental composition of plasma in hot coronal sources like flares and active regions. ChemiX is under development at the Wroc?aw Solar Physics Division of the Polish Academy of Sciences Space Research Centre in collaboration with an international team (see the co-author list). This paper gives an overview of the ChemiX scientific goals and design preparatory to phase B of the instrument development.  相似文献   

4.
We provide a brief overview of the main methods and results of spectroscopic studies of several active plasma structures in the solar corona with the RES spectroheliograph in the SPIRIT experiment. This instrument has allowed ~ 150 monochromatic images of the entire Sun in extreme UV (EUV) lines in the 175-to 205-and 280-to 330-Å spectral bands and in the X-ray Mg XII 8.42-Å line to be simultaneously obtained for the first time. The RES instrument has taken ~ 300000 spectroheliograms with a high time resolution over the period of its operation since the launch of the satellite on July 31, 2001. The accumulated data were used to construct and calibrate the spectra of solar flares and compact active regions with a spectral resolution of 0.04 Å. Based on EUV spectra, we determined the temperature distributions of the electron density and differential emission measure (DEM) for several active plasma structures observed in the RES X-ray channel: active regions, flares, and spiders. The results of modeling the physical conditions in an emitting plasma were used to analyze the formation and dynamics of plasma structures detected in the monochromatic X-ray images of the entire Sun.  相似文献   

5.
Temperature and emission measure from goes soft X-ray measurements   总被引:1,自引:0,他引:1  
  相似文献   

6.
The Space Environment Viability of Organics (SEVO) experiment is one of two scientific payloads aboard the triple-cube satellite Organism/ORganic Exposure to Orbital Stresses (O/OREOS). O/OREOS is the first technology demonstration mission of the NASA Astrobiology Small Payloads Program. The 1-kg, 1000-cm3 SEVO cube is investigating the chemical evolution of organic materials in interstellar space and planetary environments by exposing organic molecules under controlled conditions directly to the low-Earth orbit (LEO) particle and electromagnetic radiation environment. O/OREOS was launched on November 19, 2010 into a 650-km, 72°-inclination orbit and has a nominal operational lifetime of six months. Four classes of organic compounds, namely an amino acid, a quinone, a polycyclic aromatic hydrocarbon (PAH), and a metallo-porphyrin are being studied. Initial reaction conditions were established by hermetically sealing the thin-film organic samples in self-contained micro-environments. Chemical changes in the samples caused by direct exposure to LEO radiation and by interactions with the irradiated microenvironments are monitored in situ by ultraviolet/visible/near-infrared (UV/VIS/NIR) absorption spectroscopy using a novel compact fixed-grating CCD spectrometer with the Sun as its light source. The goals of the O/OREOS mission include: (1) demonstrating key small satellite technologies that can enable future low-cost astrobiology experiments, (2) deploying a miniature UV/VIS/NIR spectrometer suitable for in-situ astrobiology and other scientific investigations, (3) testing the capability to establish a variety of experimental reaction conditions to enable the study of astrobiological processes on small satellites, and (4) measuring the chemical evolution of organic molecules in LEO under conditions that can be extrapolated to interstellar and planetary environments. In this paper, the science and technology development of the SEVO instrument payload and its measurements are described.  相似文献   

7.
A grazing incidence X-ray telescope on board the OSO-IV spacecraft obtained images of the Sun in the 2.5 to 12 Å waveband nearly continuously from 27 October 1967 to 12 May 1968. The instrument had sufficient spatial resolution (one and four arc minutes) and temporal resolution (5 to 20 min) to estimate the spatial characteristics of X-ray emitting regions and to monitor the temporal behavior of individual active regions. Variations in the absence of flares of as much as a factor of 10 in the X-ray output of individual regions were observed, with typical durations ranging from several hours to several days. The X-ray time variations are related to observations at optical and radio wavelengths. The results are interpreted under the assumption that the X-ray time variations are caused by temperature changes in the coronal portions of active regions. The contribution of radiative losses to the energy budget of the coronal active region is estimated.  相似文献   

8.
The Goddard Space Flight Center instrument carried on the pointed section of the OSO-7 satellite is described. This instrument contains: An extreme ultraviolet spectroheliograph using glancing incidence optics of Wolter's Type II to focus the Sun's light on the entrance slit of a concave grating spectrometer; an auxiliary H system; two X-ray spectroheliographs using mechanical collimators for spatial resolution and Ross filters to isolate spectral bands of interest, and a flare polarimeter operating in the 15–40 keV X-ray region. These subsystems may be operated in a number of modes which, when combined with the spacecraft modes, give the instrument great flexibility for making solar observations. Representative results from each of the subsystems are presented.  相似文献   

9.
Solar Photometer in X-rays (SphinX) is an instrument designed to observe the Sun in X-rays in the energy range 0.85–15.00 keV. SphinX is incorporated within the Russian TESIS X and EUV telescope complex aboard the CORONAS-Photon satellite which was launched on January 30, 2009 at 13:30 UT from the Plesetsk Cosmodrome, northern Russia. Since February, 2009 SphinX has been measuring solar X-ray radiation nearly continuously. The principle of SphinX operation and the content of the instrument data archives is studied. Issues related to dissemination of SphinX calibration, data, repository mirrors locations, types of data and metadata are discussed. Variability of soft X-ray solar flux is studied using data collected by SphinX over entire mission duration.  相似文献   

10.
The X-ray spectrum of the quiet Sun in the energy range 2.3–6.9 keV was observed from an Aerobee rocket using an uncollimated graphite crystal spectrometer. These results and spatial measurements made with an onboard modulation collimator are analyzed using solar models. Several methods of estimating coronal temperatures are used in the analysis and all yield results within the range (4±l) × l06K.  相似文献   

11.
The D-CIXS X-ray spectrometer on ESA's SMART-1 mission will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of elemental abundances. The instrument will be able to detect elemental Fe, Mg, Al and Si under normal solar conditions and several other elements during solar flare events. These data will allow for advances in several areas of lunar science, including an improved estimate of the bulk composition of the Moon, detailed observations of the lateral and vertical nature of the crust, chemical observations of the maria, investigations into the lunar regolith, and mapping of potential lunar resources. In combination with information to be obtained by the other instruments on SMART-1 and the data already provided by the Clementine and Lunar Prospector missions, this information will allow for a more detailed look at some of the fundamental questions that remain regarding the origin and evolution of the Moon.  相似文献   

12.
The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is a European Space Agency hard X-ray/γ-ray observatory for astrophysics, covering photon energies from 15 keV to 10 MeV. It was launched in 2002, and since then the Bismuth Germanate (BGO) detectors of the Anti-Coincidence Shield (ACS) of the Spectrometer on INTEGRAL (SPI) have detected many hard X-ray (HXR) bursts from the Sun, producing light curves at photon energies above ≈?100 keV. The spacecraft has a highly elliptical orbit, providing long uninterrupted observing (about 90 % of the orbital period) with nearly constant background due to the shorter time needed to cross Earth’s radiation belts. However, because of technical constraints, INTEGRAL cannot be pointed at the Sun, and high-energy solar photons are always detected in nonstandard observation conditions. To make the data useable for solar studies, we have undertaken a major effort to specify the observing conditions through Monte Carlo simulations of the response of ACS for several selected flares. We checked the performance of the model employed for the Monte Carlo simulations using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations for the same sample of solar flares. We conclude that although INTEGRAL was not designed to perform solar observations, ACS is a useful instrument for solar-flare research. In particular, its relatively large effective area allows determining good-quality HXR/γ-ray light curves for X- and M-class solar flares and, in some cases, probably also for C-class flares.  相似文献   

13.
The Solar X-ray Imager (SXI) was launched 23 July 2001 on NOAAs GOES-12 satellite and completed post-launch testing 20 December 2001. Beginning 22 January 2003 it has provided nearly uninterrupted, full-disk, soft X-ray solar images, with a continuous frame rate significantly exceeding that for previous similar instruments. The SXI provides images with a 1 min cadence and a single-image (adjustable) dynamic range near 100. A set of metallic thin-film filters provides temperature discrimination in the 0.6 – 6.0 nm bandpass. The spatial resolution of approximately 10 arcsec FWHM is sampled with 5 arcsec pixels. Three instrument degradations have occurred since launch, two affecting entrance filters and one affecting the detector high-voltage system. This work presents the SXI instrument, its operations, and its data processing, including the impacts of the instrument degradations. A companion paper (Pizzo et al., this issue) presents SXI performance prior to an instrument degradation that occurred on 5 November 2003 and thus applies to more than 420000 soft X-ray images of the Sun.  相似文献   

14.
Birmingham Solar Oscillations Network (BiSON) instruments use resonant scattering spectrometers to make unresolved Doppler velocity observations of the Sun. Unresolved measurements are not homogenous across the solar disc and so the observed data do not represent a uniform average over the entire surface. The influence on the inhomogeneity of the solar rotation and limb darkening has been considered previously and is well understood. Here, we consider a further effect that originates from the instrumentation itself. The intensity of light observed from a particular region on the solar disc is dependent on the distance between that region on the image of the solar disc formed in the instrument and the detector. The majority of BiSON instruments have two detectors positioned on opposite sides of the image of the solar disc and the observations made by each detector are weighted towards differing regions of the disc. Therefore, the visibility and amplitudes of the solar oscillations and the realization of the solar noise observed by each detector will differ. We find that the modelled bias is sensitive to many different parameters such as the width of solar absorption lines, the strength of the magnetic field in the resonant scattering spectrometer, the orientation of the Sun's rotation axis, the size of the image observed by the instrument and the optical depth in the vapour cell. We find that the modelled results best match the observations when the optical depth at the centre of the vapour cell is 0.55. The inhomogeneous weighting means that a 'velocity offset' is introduced into unresolved Doppler velocity observations of the Sun, which varies with time, and so has an impact on the long-term stability of the observations.  相似文献   

15.
The Extreme ultraviolet Imaging Spectrometer (EIS) onboard Hinode is the first solar telescope to obtain wide-slit spectral images that can be used for detecting Doppler flows in transition region and coronal lines on the Sun and to relate them to their surrounding small-scale dynamics. We select EIS lines covering the temperature range 6×104 to 2×106 K that give spectrally pure images of the Sun with the 40-arcsec slit. In these images Doppler shifts are seen as horizontal brightenings. Inside the image it is difficult to distinguish shifts from horizontal structures but emission beyond the image edge can be unambiguously identified as a line shift in several lines separated from others on their blue or red side by more than the width of the spectrometer slit (40 pixels). In the blue wing of He ii, we find a large number of events with properties (size and lifetime) similar to the well-studied explosive events seen in the ultraviolet spectral range. Comparison with X-Ray Telescope (XRT) images shows many Doppler shift events at the footpoints of small X-ray loops. The most spectacular event observed showed a strong blue shift in the transition region and lower corona lines from a small X-ray spot that lasted less than 7 min. The emission appears to be near a cool coronal loop connecting an X-ray bright point to an adjacent region of quiet Sun. The width of the emission implies a line-of-sight velocity of 220 km s−1. In addition, we show an example of an Fe xv shift with a velocity of about 120 km s−1, coming from what looks like a narrow loop leg connecting a small X-ray brightening to a larger region of X-ray emission.  相似文献   

16.
The X-ray Telescope (XRT) of the Hinode mission provides an unprecedented combination of spatial and temporal resolution in solar coronal studies. The high sensitivity and broad dynamic range of XRT, coupled with the spacecraft’s onboard memory capacity and the planned downlink capability will permit a broad range of coronal studies over an extended period of time, for targets ranging from quiet Sun to X-flares. This paper discusses in detail the design, calibration, and measured performance of the XRT instrument up to the focal plane. The CCD camera and data handling are discussed separately in a companion paper.  相似文献   

17.
Well-resolved Raman spectra of examples of nitrogen-containing compounds were detected using a portable Raman instrument (Ahura First Defender XL) outdoors at a low temperature of −15 °C at an altitude of 2860 m (Pitztall, Austria). The portable Raman spectrometer tested here is equipped with a 785 nm diode laser and fixed frontal probe. Solid forms of formamide, urea, 3-methylpyridine, aniline, indene, 1-(2-aminoethyl)piperazine, benzofuran and indoline were detected unambiguously under field high-mountain conditions. The main Raman features (strong, medium and partially weak bands) were observed at their correct wavenumber positions (spectral resolution 7-10 cm−1) in the range 200-2000 cm−1. The results obtained demonstrate the possibility of applying a miniaturised Raman spectrometer as key instrument for investigating the presence of nitrogen-containing organic compounds and biomolecules under low temperature field conditions. Within the payload designed by ESA and NASA for future missions focusing not only on Mars, Raman spectroscopy will be an important non-destructive analytical tool for the in-situ identification of both organic and inorganic compounds relevant to life detection on planetary surfaces or near sub-surfaces.  相似文献   

18.
The Solar X-ray Imager (SXI) was launched on 23 July 2001 on NOAAs GOES-12 satellite and completed post-launch testing on 20 December 2001. It was brought into operations on 21 January 2003. This paper documents SXI performance and calibrations prior to an instrument degradation that occurred on 5 November 2003 and thus covers more than 420000 soft X-ray images of the Sun. This paper details component-level as well as full-system calibrations characterizing the spatial and spectral performance of the instrument, including the grazing-incidence mirror, filters, and the properties of the MCP-intensified CCD detector system. Routine image corrections are also described. These include background (dark current) subtraction, flat-fielding, off-band light-leak correction, and image pointing and timing considerations. In addition, a signal-to-noise analysis is presented. The information contained in this study is intended to enable researchers to conduct quantitative analysis of GOES-12 SXI images.  相似文献   

19.
The Wilcox Solar Observatory at Stanford University houses one of the International Research on the Interior of the Sun (IRIS) network observing stations. The instrument has observed the global oscillations of the Sun continually since it was installed in August 1987. Each site and instrument are different; here we report the details unique to the Stanford site.  相似文献   

20.
Calculations which predict that a phenomenon analogous to stellar negative pre-flares could also exist on the Sun were published by Hénouxet al. (1990), and Aboudarhamet al., (1990), who showed that at the beginning of a solar white-light flare (WLF) event an electron beam can cause a transient darkening before the WLF emission starts, under certain conditions. They named this event a black light flare (BLF). Such a BLF event should appear as diffuse dark patches lasting for about 20 seconds preceding the WLF emission, which would coincide with intense and impulsive hard X-ray bursts. The BLF location would be at (or in the vicinity of) the forthcoming bright patches. Their predicted contrast depends on the position of the flare on the solar disc and on the wavelength band of the observation.TheYohkoh satellite provided white-light data from the aspect camera of the SXT instrument (Tsunetaet al., 1991), at 431 nm and with a typical image interval of 10–12 s. We have studied nine white-light flares observed with this instrument, with X-ray class larger than M6. We have found a few interesting episodes, but no unambiguous example of the predicted BLF event. This study, although the best survey to date, was not ideal from the observational point of view. We therefore encourage further searches. Successful observations of this phenomenon on the Sun would greatly strengthen our knowledge of the lower solar atmosphere and its effects on solar luminosity variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号