首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I.MesozoicEraVolcanicAchvityDlepre-Tertlalyl11etal11olphicbase111entisOnlyexposedalongtheeastemflankoftheBackboneRangeoftl1eCentraIRangeinTaiwan(Figurel).Overlpngthebasen1e11t,tl1estratumofTertiarytoQuaten1alysysten11sexposed(Flgure2).Deposltlonofthepre-TertlaryrocksprobablybopninPen1llanperiodandextendedintoMesozoic.Theserockswerelatertectonizedandlnotal1lorPhosedinlateMesozoictil11earldtl1el11aJororogenic111ovelnentisnamedYenshanlllovelnent(t1ieNanaoorogenylnTaiwan).A:lthe111eta11…  相似文献   

2.
A quantitative geomorphological study has been made on 27 river basins in Tahiti-Nui volcanic island (French Polynesia) to reconstruct the erosional evolution of a young oceanic island subjected to heavy tropical rainfall. Tahiti-Nui is composed of a main shield volcano cut by two huge landslides on each side of a main E–W rift zone. The northern landslide depression was rapidly buried by the construction of a second shield, the late activity of which overflowed the crest and then filled the southern landslide depression. The island is now volcanically inactive and is deeply dissected by erosion. The present geometries of the river basins are first compared using dimensionless parameters derived from a digital elevation model. The original volcanic surfaces are then reconstructed to estimate the volumes removed by erosion and determine the average rates of long-term erosion. The basins developed on the flanks of the main shield are wider, shallower, and gentler than the basins incising the post-landslide second shield, indicating a higher degree of evolution. Rainfall concentration on the windward (eastern) side of the island also contributed to increase the vertical lowering of the volcanic relief and the enlargement of the valleys. The magnitude of erosion, however, is neither directly linked with the age of the units incised nor with the differential amounts of rainfall. Erosion rates determined over the last 1 Myr range between 10− 3 km3 kyr− 1 and 0.25 km3 kyr− 1. The highest values occur in the basins incising the main E–W rift zone and/or the lateral rims of the northern and southern landslide depressions. Long-term dissection has thus been enhanced along the geological discontinuities of the eruptive system. Deep erosion was first constrained along the axis of the main E–W rift zone, where numerous dykes compartmentalize the volcanic structure into large unstable blocks. Dykes most probably acted as mechanical discontinuities along which shallow gravitational landslides recurrently occurred. Such mass-wasting episodes produced significant amounts of debris, partly preserved as highly indurated sedimentary breccias of various ages exposed at various locations. Subsequent dissection of Tahiti-Nui was enhanced to the north and to the south, leading to the rapid evolution of the Papenoo and Taharuu drainage systems over the last 500 kyr. Long-term dissection on Tahiti-Nui has been responsible for the removal of at least 350 km3 of volcanic material from the surface, and for the partial exhumation of a shallow intrusive complex partly composed of coarse-grained plutonic rocks (gabbros and syenites) in the central part of the eruptive system. Structurally controlled erosion is thus a key component of landscape evolution on such high-relief oceanic tropical islands.  相似文献   

3.
刘锡清  刘洪滨 《地理研究》2008,27(1):119-127
岛屿对于发展海洋经济,确定海洋权属,以及国家安全等方面都具有重要地位。因此,岛屿的成因分类研究具有重要理论意义和应用价值。传统上将岛屿分为大陆岛、海洋岛(火山岛与珊瑚岛)和冲积岛。这种分类已经不能适应现代地球学科的新进展。本文根据板块构造理论和大洋地貌体系,提出新的岛屿分类意见,即分为内力和外力两个成因系列,包括近岸大陆岛、隆起大陆岛、大陆火山岛、岛弧陆块岛、岛弧火山岛、俯冲增生岛、无震海岭火山岛、微型陆块岛、海山火山岛、中脊火山岛、构造断层岛、河口沙岛、障壁岛、侵蚀沙岛、珊瑚岛15个类型。  相似文献   

4.
Gravity anomalies and flexure of the lithosphere at Ascension Island   总被引:1,自引:0,他引:1  
Ascension Island, in the northern South Atlantic, forms the summit of a volcanic edifice 60 km in diameter which places a substantial load on the underlying young oceanic lithosphere. An analysis of a combined data set of recent and historical surface-gravity and bathymetry measurements on and around the island suggests that the lithosphere responds to this load by flexure equivalent to that of an elastic plate only ≈ 3 km thick, and that the mean density of the volcanic edifice is ≈ 2500 kg m-3. A steep gravity gradient across the island cannot be explained by a simple flexural model and must be attributed to lateral density variations within the volcano itself. The effective elastic thickness is considerably less than the expected ≈ 12 km mechanical thickness of the ≈ 6 Ma lithosphere loaded by the volcano, and less even than zero-age elastic thicknesses commonly observed at slow-spreading ridges with axial rift valleys. The unusually small elastic thickness may be attributed to the combined effects of the high curvature beneath the island, which produces bending stresses that are limited by the yield stress envelope, localized heating of the lithosphere during emplacement of the island, and crustal thickening. When these factors are taken into account, the observed flexure is consistent with rheological models based on experimental rock mechanics.  相似文献   

5.
对乔治王岛上白垩统半三角组火山岩样品进行了 Rb- Sr同位素等时线年龄测定 ,所获结果为 71 .3 3± 0 .3 Ma。通过 εND(T) - 14 7Sm/14 4Nd,14 3 Nd/14 4Nd- 87Sr/86 Sr,87Sr/86 Sr- Sr和 87Sr/86 Sr- K2 O/(K2 O+Na2 O)的相关性研究表明 ,该火山岩物质主要来自亏损地幔 (DMM)源区 ,基本上未受到地壳物质混染。其中 6个样品的平均 Sm- Nd模式年龄 (TNd DM)为 443 .3± 2 0 .6 Ma,可能反映了在研究地区的岩浆源区化学分异事件的时代。微量元素的特点表明 ,半三角组样品属典型的钙碱性火山岩系列 ,与长城站地区第三系火山岩相类似 ,同属于岛弧火山活动的产物。  相似文献   

6.
The deep seismic reflection profile Western Approaches Margin (WAM) cuts across the Goban Spur continental margin, located southwest of Ireland- This non-volcanic margin is characterized by a few tilted blocks parallel to the margin. A volcanic sill has been emplaced on the westernmost tilted block. The shape of the eastern part of this sill is known from seismic data, but neither seismic nor gravity data allow a precise determination of the extent and shape of the volcanic body at depth. Forward modelling and inversion of magnetic data constrain the shape of this volcanic sill and the location of the ocean-continent transition. The volcanic body thickens towards the ocean, and seems to be in direct contact with the oceanic crust. In the contact zone, the volcanic body and the oceanic magnetic layer display approximately the same thickness. The oceanic magnetic layer is anomalously thick immediately west of the volcanic body, and gradually thins to reach more typical values 40 km further to the west. The volcanic sill would therefore represent the very first formation of oceanic crust, just before or at the continental break-up. The ocean-continent transition is limited to a zone 15 km wide. The continental magnetic layer seems to thin gradually oceanwards, as does the continental crust, but no simple relation is observed between their respective thinnings.  相似文献   

7.
The development of high‐resolution 3D seismic cubes has permitted recognition of variable subvolcanic features mostly located in passive continental margins. Our study area is situated in a different tectonic setting, in the extensional Pannonian Basin system (central Europe) where the lithospheric extension was associated with a wide variety of magmatic suites during the Miocene. Our primary objective is to map the buried magmatic bodies, to better understand the temporal and spatial variation in the style of magmatism and emplacement mechanism within the first order Mid‐Hungarian Fault Zone (MHFZ) along which the substantial Miocene displacement took place. The combination of seismic, borehole and log data interpretation enabled us to delineate various previously unknown subvolcanic‐volcanic features. In addition, a new approach of neural network analysis on log data was applied to detect and quantitatively characterise hydrothermal mounds that are hard to interpret solely from seismic data. The volcanic activity started in the Middle Miocene and induced the development of extrusive volcanic mounds south of the NE‐SW trending, continuous strike‐slip fault zone (Hajdú Fault Zone). In the earliest Late Miocene (11.6–9.78 Ma), the style of magmatic activity changed resulting in emplacement of intrusions and development of hydrothermal mounds. Sill emplacement occurred from south‐east to north‐west based on primary flow‐emplacement structures. The time of sill emplacement and the development of hydrothermal mounds can be bracketed by onlapped forced folds and mounds. This time coincided with the acceleration of sedimentation producing poorly consolidated, water‐saturated sediments preventing magma from flowing to the paleosurface. The change in extensional direction resulted in change in fault pattern, thus the formerly continuous basin‐bounding strike‐slip fault became segmented which could facilitate the magma flow toward the basin centre.  相似文献   

8.
Summary. The crustal structure beneath the Vema fracture zone and its flanking transverse ridge was determined from seismic refraction profiles along the fracture zone valley and across the ridge. Relatively normal oceanic crust, but with an upwarped seismic Moho, was found under the transverse ridge. We suggest that the transverse ridge represents a portion of tectonically uplifted crust without a major root or zone of serpentinite diapirism beneath it. A region of anomalous crust associated with the fracture zone itself extends about 20 km to either side of the central fault, gradually decreasing in thickness as the fracture zone is approached. There is evidence to suggest that the thinnest crust is found beneath the edges of the 20 km wide fracture zone valley. Under the fracture zone valley the crust is generally thinner than normal oceanic crust and is also highly anomalous in its velocity structure. Seismic layer 3 is absent, and the seismic velocities are lower than normal. The absence of layer 3 indicates that normal magmatic accretionary processes are considerably modified in the vicinity of the transform fault. The low velocities are probably caused by the accumulation of rubble and talus and by the extensive faulting and fracturing associated with the transform fault. This same fracturing allows water to penetrate through the crust, and the apparently somewhat thicker crust beneath the central part of the fracture zone valley may be explained by the resultant serpentinization having depressed the seismic Moho below its original depth.  相似文献   

9.
Summary. The East Pacific Rise at 12–15° S is topographically smooth with a crestal horst or linear volcanic peak marking the present axis of spreading. The Galapagos Rise at 14–17° S is topographically rough with a possible central graben marking the extinct spreading axis. The seafloor spreading magnetic anomalies on the East Pacific Rise are of low amplitude, but fracture-zone anomalies at 13–14° S have amplitudes of up to 1250 nT. Anomalies of this amplitude at the magnetic equator must be formed within the fracture zone by some combination of block reversal boundaries, anomalously-high magnetic intensities, and/or anomalously-large thicknesses of the magnetic layers within the fracture zone. Magnetization and major-element chemical analyses of basalts dredged from four locales along the fracture zone indicate that the large magnetic-anomaly amplitudes are caused by the high iron and titanium content of these ferrobasalts. The magnetic-anomaly profiles from the Galapagos Rise and its fracture-zone system are of normal amplitude and are extremely difficult to correlate internally or with the geomagnetic timescale.
Eighty-one heat-flow measurements indicate that the values measured are controlled by sediment thickness. Where the thickness of the sediment blanket is greater than 100 m, high heat flow is measured and possibly is representative of the total heat transfer at the seafloor. Where the sediment thickness is less than 100 m, seawater circulation in the oceanic crust is thought to remove most of the heat convectively; thus causing low conductive heat-flow values to be measured by the usual heat-flow apparatus. The heat loss by convective processes is probably a function also of topographic roughness and sediment permeability.  相似文献   

10.
西南极乔治王岛菲尔德斯半岛火山岩地质初步研究   总被引:3,自引:1,他引:2       下载免费PDF全文
西南极乔治王岛菲尔德斯半岛主要由基性熔岩、火山碎屑岩及薄层沉积岩组成,并有次火山岩体及脉岩发育.野外观察及K—Ar,Rb—Sr全岩年龄说明岩石形成于始新一渐新世.主要元素和微量元素地球化学特征说明岩石属低钾高铝钙碱性玄武岩,但具有拉斑玄武岩的某些特征,是岛弧火山活动的产物.岩层呈平缓单斜,发育有近同期及后期走滑正断层,以及由断层活动形成的局部以称褶皱.  相似文献   

11.
The main source of siliciclastic sediment in the Barbados accretionary prism is off‐scraped quartzose to feldspatho‐litho‐quartzose metasedimentaclastic turbidites, ultimately supplied from South America chiefly via the Orinoco fluvio‐deltaic system. Modern sand on Barbados island is either quartzose with depleted heavy‐mineral suites recycled from Cenozoic turbidites and including epidote, zircon, tourmaline, andalusite, garnet, staurolite and chloritoid, or calcareous and derived from Pleistocene coral reefs. The ubiquitous occurrence of clinopyroxene and hypersthene, associated with green‐brown kaersutitic hornblende in the north or olivine in the south, points to reworking of ash‐fall tephra erupted from andesitic (St Lucia) and basaltic (St Vincent) volcanic centres in the Lesser Antilles arc. Modern sediments on Barbados island and those shed by larger accretionary prisms such as the Indo‐Burman Ranges and Andaman‐Nicobar Ridge define the distinctive mineralogical signature of Subduction Complex Provenance, which is invariably composite. Detritus recycled from accreted turbidites and oceanic mudrocks is mixed in various proportions with detritus from the adjacent volcanic arc or carbonate reefs widely developed at tropical latitudes. Ophiolitic detritus, locally prominent on the Andaman Islands, is absent on Barbados, where the prism formed above a westward subduction zone with a shallow décollement plane. The four‐dimensional complexities inherent with multicyclic sediment dispersal along and across convergent plate boundaries require quantitative provenance analysis as a basic tool in paleogeographic reconstructions. Such analysis provides the link between faraway factories of detritus and depositional sinks, as well as clues on subduction geometry and the nature of associated growing orogenic belts, and even information on climate, atmospheric circulation and weathering intensity in source regions.  相似文献   

12.
A mechanical-statistical model is presented that aims to help to understand the history and geometry of the process of formation of fracture zones along oceanic ridges. It uses ideas of statistical fracture theory used in engineering, namely the Weibull fracture model. The approximate parallelism of the fracture zones along ridges makes it possible to use a one-dimensional point process model with points along the ridge axes, which represent the transform faults. The ratios of the lengths of the corresponding fracture zones to the ocean width are used to obtain a rough estimate of the Weibull modulus, which is an important material parameter in fracture theory. The theory is refined by introducing a hard-core point process model. The corresponding positive minimum distance between subsequent fracture zones results from stress relaxation in the vicinity of a given fracture zone.  相似文献   

13.
14.
ABSTRACT. The definition of oceans as international politicized space is an integral but little analyzed aspect of early modern European expansion, which took place between about 1450 and 1800. In this essay I explore the implications of thinking about the development of European imperialism and global dominance in oceanic terms. I argue that oceanic, rather than terrestrial, dominance characterized early modern European empires, particularly in relation to Africa and Asia, where indigenous political and economic control prevailed. The long apprenticeship in mastering oceanic space contributed to the ability of Europeans to build land-based empires in Asia and Africa in the nineteenth century. As well, the international relationships worked out by Europeans in the nonstate but militarized arena of the high seas contributed to an emergent global order.  相似文献   

15.
西南极利文斯顿岛百耳斯半岛火山岩的同位素年龄   总被引:2,自引:0,他引:2       下载免费PDF全文
以K-Ar稀释法和40Ar/39Ar阶段加热法对利文斯顿岛百尔斯半岛的熔岩和次火山岩测定了同位素年龄。新的年龄数据表明,该区火山活动在晚侏罗纪末即已开始,一直持续到晚白垩世,存在着三期火山活动的产物。侏罗纪末~早白垩世初的火山活动除有熔岩(146Ma,137Ma)喷出外,还发育有辉长岩侵入体(135Ma)和辉绿岩岩墙(129Ma)等次火山岩。安山岩(114Ma)和石英斑岩(94Ma)则是早白垩世火山活动的结果。半岛东部具沉积夹层的玄武岩(71Ma)是区域上晚白垩世~早第三纪火山活动的代表。  相似文献   

16.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   

17.
ten Veen  & Postma 《Basin Research》1999,11(3):223-241
Six time-slice reconstructions in the form of palaeogeographical maps show the large-scale tectonic and sedimentary evolution of the Hellenic outer-arc basins in central and eastern Crete for the middle and late Miocene. The reconstructions are based on extensive field mapping and a detailed chronostratigraphy. Latest compressional features related to subduction and associated crustal thickening are poorly dated and assigned a middle Miocene age. These are possibly contemporaneous with widespread occurrence of breccia deposits all over Crete. The precise date for the onset of extension, possibly controlled by the roll-back of the subsiding African lithosphere, remains at this point a discussion. We present circumstantial evidence to place the beginning of the roll back in the middle Miocene, during the accumulation of an arc-parallel, westward-draining fluvial complex. The continental succession is transgressed steadily until it is interrupted by an important tectonic event at the boundary of the middle and late Miocene (normally seen as the onset of slab roll-back). In the earliest late Miocene a few large-sized fault blocks along arc-parallel normal faults subsided rapidly causing a deepening of the half-graben basins up to approximately 900 m. About 1 Myr later, a new N020E and N100E fault system developed fragmenting the existing half-grabens into orthogonal horst and graben structure. The development of the new fault system caused original continental regions to subside and original deep basins to emerge, which is not easy to reconcile with roll back controlled extensional processes alone. Underplating and inherited basement structure may have played here an additional role, although evidence for firm conclusions is lacking. In late Miocene times (late Tortonian, ≈7.2 Ma), the extensional outer arc basins become deformed by N075E-orientated strike-slip. The new tectonic regime begins with strong uplift along existing N100E fault zones, which developed about E–W-striking topographical highs (e.g. Central Iraklion Ridge and Anatoli anticline) in about 0.4 Myr. The strong uplift is contemporaneous with abundant landsliding observed along an important N075E fault zone crossing eastern Crete and with renewed volcanic activity of the arc. The origin of the ridges may be due to active folding related to the sinistral slip.  相似文献   

18.
位于青藏高原东南部的横断山区,是我国东部环太平洋区与西部古地中海区间的交接过渡地带,也是我国地质结构最为复杂的一个区域。作者根据1981—1985年在当地考察资料,将本区分出5条具洋壳性质的强变形构造带,2块具陆壳性质的地块,它们相间并列。文章论述了各条块的发育特征及区域演化历史。  相似文献   

19.
1985—1986年度和1986—1987年度在菲尔德斯半岛对地面温度进行了测量,共获得129个数据,并对带回的样品进行了岩石热导率测量,共获得210个数据。本文在分析和归纳这些数据的基础上对菲尔德斯半岛的地温特征和岩石热物理性质进行了初步探讨。  相似文献   

20.
The segment of the Interandean Depression of Ecuador between Ambato and Quito is characterized by an uppermost Pliocene–Quaternary basin, which is located between two N-S trending reverse basement faults: the Victoria Fault to the west, and the Pisayambo Fault to the east. The clear evidence of E-W shortening for the early Pleistocene (between 1.85 and 1.21 Ma) favours a compressional basin interpretation. The morphology (river deviations, landslides, folded and flexure structures) demonstrates continuous shortening during the late Quaternary. The late Pliocene-Quaternary shortening reached 3400 ± 600 m with a rate of 1.4 ± 0.3 mm yr−1. The E-W shortening is kinematically consistent with the current right-lateral reverse motion along the NE-SW trending Pallatanga Fault. The Quito-Ambato zone appears to act as a N-S restraining bend in a system of large right-lateral strike-slip faults. The compressive deformation which affects the Interandean Depression during the Pliocene is apparently coeval to the beginning subduction of very young oceanic lithosphere north of the Gulf of Guayaquil. The relatively buoyant new crust may have significantly increased the mechanical coupling in the subduction zone from Pliocene to Present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号