首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
PP3超镁铁岩主要岩石类型有纯橄岩和石榴石橄榄岩,两者为渐变,主要矿物为橄榄石、铬尖晶石、石榴石、单斜辉石和斜方辉石.铬尖晶石的Cr#[Cr/(Cr+Mg) ×100]从51~89变化,TiO2和MnO2值分别低于0.26%和0.46%.铬尖晶石矿物表现为4期次演化的特点,反映了从岩浆期、榴辉岩相、角闪岩相和绿片岩相演化特征.随着超镁铁岩的演化,铬尖晶石表现为Cr#不断增大,而Mg#[Mg×100/(Mg+Fe2+) ]不断减少、氧逸度不断增加的过程.PP3铬尖晶石反映了地幔来源,为大陆岩石圈超镁铁岩特征,后期随折返而演化.从石榴石与铬尖晶石相互转变过程看出,PP3超镁铁岩经历了深度加大的过程,超镁铁岩曾经到达100km以上的岩石圈地幔深处.在绿片岩相-绿片角闪岩相变质过程中,铬尖晶石中Cr、Mg和Al减少,Fe相对增加,产生富Cr尖晶石变质作用样式.晚期剪切变形等次生变化影响了铬尖晶石矿物成分.   相似文献   

2.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

3.
The main hole (MH), and pre-pilot holes PP1, and PP3 of the Chinese Continental Scientific Drilling Project (CCSD) penetrated three different garnet peridotite bodies in the Sulu ultrahigh pressure (UHP) metamorphic belt, which are 80 m, 120 m, and 430 m thick, respectively. The bodies occur as tectonic blocks hosted in eclogite (MH peridotite) and gneisses (PP1 and PP3 peridotites). The peridotites in the MH are garnet wehrlites, whose protoliths were ultramafic cumulates based on olivine compositions (Fo79-89) and other geochemical features. Zoned garnet and omphacite (with 4-5 wt.% Na2O) are typical metamorphic minerals in these rocks, and, along with P-T estimates based on mineral pairs, suggest that the rocks have undergone UHP metamorphism. SHRIMP U-Pb isotope dating of zircon from the garnet wehrlite yielded a Paleozoic protolith age (ca. 346-461 Ma), and a Mesozoic UHP metamorphic age (ca. 220-240 Ma). The peridotites in PP1 consist of interlayered garnet (Grt)-bearing and garnet-free (GF) peridotite. Both types of peridotite have depleted mantle compositions (Mg# = 90-92) and they display transitional geochemical features. The intercalated layers probably reflect variations in partial melting rather than pressure variations during metamorphism, and the garnets may have been formed by exsolution from orthopyroxene during exhumation. These peridotites were probably part of the mantle wedge above the subduction zone that produced the UHP metamorphism and thus belonged to the North China Block before its tectonic emplacement. The exhumation of the subducted Yangtze Block brought these mantle fragments to shallow crustal levels. The ultramafic rocks in PP3 are dominantly dunite with minor garnet dunite. Their high Mg# (92-93) and relatively uniform chemical compositions indicate that they are part of a depleted mantle sequence. The presence of garnet replacing spinel and enclosing pre-metamorphic minerals such as olivine, clinopyroxene and spinel suggests that these rocks have undergone progressive metamorphism. SHRIMP U-Pb isotope dating of zircon from these rocks yielded two age groups: 726 ± 56 Ma for relic magmatic zircon grains and 240 ± 2.7 Ma for the newly formed metamorphic zircon. The older group is similar in age to granitic intrusions within the Dabie-Sulu belt, suggesting that the PP3 garnet peridotite may record the early emplacement of the peridotite into the crust. The younger dates coincide with the age of UHP metamorphism during continent-continent collision between the Yangtze and North China Blocks, suggesting that these peridotites were subducted to depths equivalent to the coesite facies and later exhumed. Thus, the garnet peridotites in the CCSD cores include both ultramafic rocks that existed originally in the subducted plate and rocks from the mantle wedge above the subducted plate, i.e., part of the North China Block.  相似文献   

4.
Corona and inclusion textures of a metatroctolite at the contact between felsic granulite and migmatites of the Gföhl Unit from the Moldanubian Zone provide evidence of the magmatic and metamorphic evolution of the rocks. Numerous diopside inclusions (1–10 μm, maximum 20 μm in size) in plagioclase of anorthite composition represent primary magmatic textures. Triple junctions between the plagioclase grains in the matrix are occupied by amphibole, probably pseudomorphs after clinopyroxene. The coronae consist of a core of orthopyroxene, with two or three zones (layers); the innermost is characterized by calcic amphibole with minor spinel and relicts of clinopyroxene, the next zone consists of symplectite of amphibole with spinel, sapphirine and accessory corundum, and the outermost is formed by garnet and amphibole with relicts of spinel. The orthopyroxene forms a monomineralic aggregate that may contain a cluster of serpentine in the core, suggesting its formation after olivine. Based on mineral textures and thermobarometric calculations, the troctolite crystallized in the middle to lower crust and the coronae were formed during three different metamorphic stages. The first stage relates to a subsolidus reaction between olivine and anorthite to form orthopyroxene. The second stage involving amphibole formation suggests the presence of a fluid that resulted in the replacement of igneous orthopyroxene and governed the reaction orthopyroxene + anorthite = amphibole + spinel. The last stage of corona formation with amphibole + spinel + sapphirine indicates granulite facies conditions. Garnet enclosing spinel, and its occurrence along the rim of the coronae in contact with anorthite, suggests that its formation occurred either during cooling or both cooling and compression but still at granulite facies conditions. The zircon U–Pb data indicate Variscan ages for both the troctolite crystallization (c. 360 Ma) and corona formation during granulite facies metamorphism (c. 340 Ma) in the Gföhl Unit. The intrusion of troctolite and other Variscan mafic and ultramafic rocks is interpreted as a potential heat source for amphibolite–granulite facies metamorphism that led to partial re‐equilibration of earlier high‐ to ultrahigh‐P metamorphic rocks in the Moldanubian Zone. These petrological and geochronological data constrain the formation of HP–UHP rocks and arc‐related plutonic complex to westward subduction of the Moldanubian plate during the Variscan orogeny. After exhumation to lower and/or middle crust, the HP–UHP rocks underwent heating due to intrusion of mafic and ultramafic magma that was generated by slab breakoff and mantle upwelling.  相似文献   

5.
Numerous lenticular bodies of ultramafic rocks occur withinthe upper amphibolite- to granulitefacies metamorphic terraneof the Austrides between the Non and Ultimo valleys (Nonsbergregion), northern Italy. The ultramafic rocks are divided intotwo textural types: (a) coarse-type; and (b) finetype. The coarse-typerocks have the protogranular texture and are predominantly spinellherzolite. Some coarse-type spinel lherzolites have partlytransformed to garnet lherzolite. The fine-types are consideredto be metamorphic derivatives of the former, and the observedmineral assemblages are: (1) olivine + orthopyroxene + clinopyroxene+ garnet + amphibole ? spinel, (2) olivine + orthopyroxene +garnet + amphibole + spinel; (3) olivine + orthopyroxene + amphibole+ spinel; and (4) olivine+ orthopyroxene + amphibole + chlorite.Based on the microprobe analyses of constituent minerals fromten representative peridotite samples, physical conditions ofthe metamorphism, particularly that of the spinel to garnetlherzolite transformation, are estimated. Applications of pyroxenegeothermometry yield temperature estimates of 1100–1300?Cfor the formation of the primary spinel lherzolite, and 700–800?Cfor that of the fine-type peridotites. A pressure range of 16–28kb is obtained for the garnet lherzolite crystallization dependingon the choice of geobarometers. Two alternative P-T paths, i.e.(1) isobaric cooling or (2) pressure-increase and temperaturedecrease are considered and their geodynamic implications discussed.  相似文献   

6.
Petrographic and geochemical studies of peridotites and melagabbros from the Maures massif (SE France) provide new constraints on the Early Palaeozoic evolution of the continental lithosphere in Western Europe. Peridotites occur as lenses along a unit rooted in the main Variscan suture zone. They are dominantly spinel peridotites and minor garnet–spinel peridotites. Spinel peridotites represent both residual mantle and ultramafic cumulates. Mantle-related dunites and harzburgites display high temperature textures, with olivine (Mg#0.90), orthopyroxene (Mg#0.90) and spinel (TiO2 < 0.2%; Cr#0.64–0.83) compositions typical of fore-arc upper mantle. Ultramafic cumulates are dunite adcumulates, harzburgite heteradcumulates and mesocumulates, melagabbro heteradcumulates and amphibole peridotites, with olivine (Mg#0.85–0.89), orthopyroxene (Mg#0.86–0.89) and Cr-spinel (TiO2 = 0.5–3.3%; Cr#0.7–0.98) compositions typical of ultramafic cumulates. Cr-spinel compositions of both spinel peridotite types suggest their genesis in a supra-subduction zone lithosphere. Core to rim zoning in spinel is related to the incomplete influence of regional metamorphism and serpentinisation. The covariation of major and minor elements with Al2O3 for cumulates is consistent with igneous processes involving crystal accumulation. Both mantle and cumulate dunites and harzburgites have U-shaped REE patterns and extremely low trace element contents, similar to peridotites from modern fore-arc peridotites (South Atlantic) and from ophiolites related to supra-subduction zones (Semail, Cyclops, Pindos, Troodos). Melagabbros also have U-shaped REE patterns similar to xenoliths from the Philippine island arc, but also similar to intrusive ultramafic cumulates from the Semail nappe of Oman related to a proto-subduction setting. A wehrlite has a REE pattern similar to that of amphibole peridotites reflecting metasomatism of clinopyroxene-bearing peridotites due to subduction-related fluids. The Maures spinel peridotites and melagabbros are therefore interpreted as the lowermost parts of a crustal sequence and minor residual mantle of lithosphere generated in a supra-subduction zone during Early Palaeozoic time. Garnet–spinel peridotites are chemically close to melagabbros, but have recorded high pressure metamorphism before their retrogression similar to spinel peridotites into amphibolites to greenschists facies metamorphism. They indicate burial to mantle depths of the margin of the supra-subduction lithosphere during the Early Palaeozoic continental subduction. Both peridotite types were exhumed during the Upper Palaeozoic continental collision. Comparable observations from other Variscan-related peridotites, in particular of the Speik complex of the Autroalpine basement, and a common age for the subduction stage allow extension of these regional conclusions to a broad area sharing the Cambrian suture zone, extending from the Ossa-Morena to the Bohemian massif.  相似文献   

7.
The Raobazhai ultramafic body of the North Dabie Complex is re-interpreted as a mantle-derived peridotitic slice enclosed in, and isofacially metamorphosed with, surrounding granulite-to-amphibolite facies gneisses. The ultramafic sheet consists mainly of metaharzburgite, but includes subunits of metadunite and mylonitic lherzolite. The rocks contain spinel but neither garnet nor plagioclase. However, in the mylonitic lherzolite, fine-grained intergrowths of spinel, orthopyroxene and clinopyroxene outline domains resembling the habit of garnet in two dimensions; broad-beam microprobe analyses imply pseudomorphs after a pyropic garnet precursor. The mineral assemblage of the metadunite and metaharzburgite is: olivine (Fo92)+orthopyroxene (En92)+tremolitic-to-magnesiohornblende+Mg–Al-chromite, indicating amphibolite facies recrystallization. The mineral assemblage of the mylonitic lherzolite is: olivine (Fo90)+orthopyroxene (En90)+clinopyroxene+Cr-bearing spinel+pargasitic amphibole, indicative of granulite-to-amphibolite facies metamorphism. Phase equilibria and geothermometric estimations show that the Raobazhai meta-ultramafics have undergone at least three stages of recrystallization: (I) 950–990 °C, (II) 750–860 °C, and (III) 670–720 °C, assuming equilibrium in the spinel peridotite stability field ( c. 6–15 kbar), although an early, high-pressure stage (≥18 kbar) is probable, based on the inferred garnet pseudomorphs. Petrochemical and geothermobarometric data suggest that the ultramafic slice represents a fragment of the mantle wedge, tectonically incorporated into subducted continental crust and re-equilibrated at granulite-to-amphibolite facies conditions while being exhumed to shallow levels.  相似文献   

8.
岗上超镁铁质岩主要由纯橄岩和石榴橄榄岩组成,主要组成矿物有橄榄石、铬尖晶石、石榴子石、单斜辉石和斜方辉石等。铬尖晶石的Cr#[Cr/(Cr+Mg)×100]从51到89变化,铬尖晶石矿物表现为4期次演化的特点,反映了从岩浆期向榴辉岩相、角闪岩相和绿片岩相演化特征。随着超镁铁质岩的演化,铬尖晶石中Cr#不断增大(51增大到89),而铬尖晶石Mg#[Mg×100/(Mg+Fe2+)]不断减少,氧逸度不断增加。在绿片岩相—绿片角闪岩相退变质过程中,铬尖晶石中Cr、Mg和Al减少,Fe相对增加,产生富Cr尖晶石变质作用样式。晚期剪切变形等次生变化有利于富铬铬尖晶石矿物的形成和铬尖晶石的富集。同时,角闪岩相和绿片岩相变质作用使铬尖晶石富集呈现容易开采的条带状,降低了铬尖晶石与其他硅酸盐矿物的结合强度,降低了开采强度和成本,使原本不易于开采的铬铁矿矿体变得可以开采。这些意味着铬铁矿矿体展布要结合后期变质作用进行综合分析。  相似文献   

9.
The Happo-O’ne peridotite complex is situated in the northeastern part of the Hida Marginal Tectonic Zone, central Japan, characterized by the high-P/T Renge metamorphism, and is considered as a serpentinite mélange of Paleozoic age. Peridotitic rocks, being massive or foliated, have been subjected to hydration and metamorphism. Their protoliths are mostly lherzolites to harzburgites with subordinate dunites. We found a characteristic mineral assemblage, olivine + orthopyroxene + tremolite + chlorite + chromian spinel, being stable at low-T, from 650 to 750°C, and high-P, from 16 to 20 kbar, tremolite–chlorite peridotites of the tremolite zone. Olivines are Fo88–Fo91, and orthopyroxenes (Mg# = 0.91) show low and homogenous distributions of Al2O3 (up to 0.25 wt%), Cr2O3 (up to 0.25 wt%), CaO (up to 0.36 wt%) and TiO2 (up to 0.06 wt%) due to the low equilibration temperature. Chromian spinels, which are euhedral and enclosed mainly in the orthopyroxenes, have high TiO2, 3.1 wt% (up to 5.7 wt%) on average, and high Cr# [=Cr/(Cr + Al) atomic ratio], 0.95 on average but low Fe3+ [=Fe3+/(Cr + Al + Fe3+) atomic ratio, <0.3]. The bulk-rock chemistry shows that the Happo-O’ne metaperidotites with this peculiar spinel are low in TiO2 (0.01–0.02 wt%), indicating no addition of TiO2 from the outside source during the metamorphism; the high TiO2 of the peculiar spinel has been accomplished by Ti release from Ti-bearing high-T pyroxenes during the formation of low-T, low-Ti silicates (<0.1 wt% TiO2) during cooling. Some dunites are intact from hydration: their olivine is Fo92 and spinel shows high Cr#, 0.72. The Happo-O’ne metaperidotites (tremolite–chlorite peridotites), being in the corner of the mantle wedge, are representative of a hydrous low-T, high-P mantle peridotite facies transitional from a higher T anhydrous peridotite facies (spinel peridotites) formed by in situ retrograde metamorphism influenced by fluids from the subducting slab. They have suffered from low-T (<600°C) retrogressive metamorphism to form antigorite and diopside during exhumation of the Renge metamorphic belt.  相似文献   

10.
南天山榆树沟麻粒岩地体的尖晶石研究   总被引:3,自引:0,他引:3  
新疆榆树沟麻粒岩地体中发育两类尖晶石:一类见于中、基性麻粒岩体中,其化学成分富 Al 贫 Cr ,属铝尖晶石,镜下为深绿色,呈半自形至他形粒状,与其它变质矿物共生,表现为麻粒岩相的新生变质矿物;另一类发育在空间上与麻粒岩体紧密相邻的超镁铁质岩体中,为铬尖晶石,镜下为深褐红色,呈不规则粒状分布于橄榄石、斜方辉石和单斜辉石之间,为麻粒岩相变质过程中稳定的残余矿物。后者属于 Dick 等人划分的 I 型尖晶石,它的存在说明超镁铁质岩体为大洋岩石圈地幔的组成部分。这两类尖晶石的特征一方面说明该地体遭受了麻粒岩相的变质作用改造,另一方面也提供了榆树沟麻粒岩相蛇绿岩套属洋盆构造环境的直接矿物学证据。  相似文献   

11.
Spinel is widespread in the ultramafic core rocks of zoned late Precambrian mafic–ultramafic complexes from the Eastern Desert of Egypt. These complexes; Gabbro Akarem, Genina Gharbia and Abu Hamamid are Precambrian analogues of Alaskan-type complexes, they are not metamorphosed although weakly altered. Each intrusion is composed of a predotite core enveloped by pyroxenites and gabbros at the margin. Silicate mineralogy and chemistry suggest formation by crystal fractionation from a hydrous magma. Relatively high Cr2O3 contents are recorded in pyroxenes (up to 1.1 wt.%) and amphiboles (up to 1.4 wt.%) from the three plutons. The chrome spinel crystallized at different stages of melt evolution; as early cumulus inclusions in olivine, inclusions in pyroxenes and amphiboles and late-magmatic intercumulus phase. The intercumulus chrome spinel is homogenous with narrow-range of chemical composition, mainly Fe3+-rich spinel. Spinel inclusions in clinopyroxene and amphibole reveal a wide range of Al (27–44 wt.% Al2O3) and Mg (6–13 wt.% MgO) contents and are commonly zoned. The different chemistries of those spinels reflect various stages of melt evolution and re-equilibration with the host minerals. The early cumulus chrome spinel reveals a complex unmixing structures and compositions. Three types of unmixed spinels are recognized; crystallographically oriented, irregular and complete separation. Unmixing products are Al-rich (Type I) and Fe3+-rich (Type II) spinels with an extensive solid solution between the two end members. The compositions of the unmixed spinels define a miscibility gap with respect to Cr–Al–Fe3+, extending from the Fe3+–Al join towards the Cr corner. Spinel unmixing occurs in response to cooling and the increase in oxidation state. The chemistry and grain size of the initial spinel and the cooling rate control the type of unmixing and the chemistry of the final products. Causes of spinel unmixing during late-magmatic stage are analogous to those in metamorphosed complexes. The chemistry of the unmixed spinels is completely different from the initial spinel composition and is not useful in petrogenetic interpretations. Spinels from oxidized magmas are likely to re-equilibrate during cooling and are not good tools for genetic considerations.  相似文献   

12.
Dunite, wehrlite and websterite are rare members of the mantle xenolith suite in the Kimberley kimberlites of the Kaapvaal Craton in southern Africa. All three types were originally residues of extensive melt extraction and experienced varying amounts and types of melt re-enrichment. The melt depletion event, dated by Re-Os isotope systematics at 2.9 Ga or older, is evidenced by the high Mg# (Mg/(Mg + Fe)) of silicate minerals (olivine (0.89-0.93); pyroxene (0.88-0.93); garnet (0.72-0.85)), high Cr# (Cr/(Cr + Al)) of spinel (0.53-0.84) and mostly low whole-rock SiO2, CaO and Al2O3 contents. Shortly after melt depletion, websterites were formed by reaction between depleted peridotites and silica-rich melt (>60 wt% SiO2) derived by partial melting of eclogite before or during cratonization. The melt-peridotite interaction converted olivine into orthopyroxene.All three xenolith types have secondary metasomatic clinopyroxene and garnet, which occur along olivine grain boundaries and have an amoeboid texture. As indicated by the preservation of oxygen isotope disequilibrium in the minerals and trace-element concentrations in clinopyroxene and garnet, this metasomatic event is probably of Mesozoic age and was caused by percolating alkaline basaltic melts. This melt metasomatism enriched the xenoliths in CaO, Al2O3, FeO and high-field-strength-elements, and might correspond to the Karoo magmatism at 200 Ma. The websterite xenoliths experienced both the orthoyproxene-enrichment and clinopyroxene-garnet metasomatic events, whereas dunite and wehrlite xenoliths only saw the later basaltic melt event, and may have been situated further away from the source of melt migration channels.  相似文献   

13.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

14.
Garnet-bearing mantle peridotites, occurring as either xenoliths in volcanic rocks or lenses/massifs in high-pressure and ultrahigh-pressure terrenes within orogens, preserve a record of deep lithospheric mantle processes. The garnet peridotite xenoliths record chemical equilibrium conditions of garnet-bearing mineral assemblage at temperatures (T) ranging from ~700 to 1,400°C and pressures (P) > 1.6–8.9 GPa, corresponding to depths of ~52–270 km. A characteristic mineral paragenesis includes Cr-bearing pyropic garnet (64–86 mol% pyrope; 0–10 wt% Cr2O3), Cr-rich diopside (0.5–3.5 wt% Cr2O3), Al-poor orthopyroxene (0–5 wt% Al2O3), high-Cr spinel (Cr/(Cr + Al) × 100 atomic ratio = 2–86) and olivine (88–94 mol% forsterite). In some cases, partial melting, re-equilibration involving garnet-breakdown, deformation, and mantle metasomatism by kimberlitic and/or carbonatitic melt percolations are documented. Isotope model ages of Archean and Proterozoic are ubiquitous, but Phanerozoic model ages are less common. In contrast, the orogenic peridotites were subjected to ultrahigh-pressure (UHP) metamorphism at temperature ranging from ~700 to 950°C and pressure >3.5–5.0 GPa, corresponding to depths of >110–150 km. The petrologic comparisons between 231 garnet peridotite xenoliths and 198 orogenic garnet peridotites revealed that (1) bulk-rock REE (rare earth element) concentrations in xenoliths are relatively high, (2) clinopyroxene and garnet in orogenic garnet peridotites show a highly fractionated REE pattern and Ce-negative anomaly, respectively, (3) Fo contents of olivines for off-cratonic xenolith are in turn lower than those of orogenic garnet and cratonic xenolith but mg-number of garnet for orogenic is less than that of off-cratonic and on-cratonic xenolith, (4) Al2O3, Cr2O3, CaO and Cr# of pyroxenes and chemical compositions of whole rocks are very different between these garnet peridotites, (5) orogenic garnet peridotites are characterized by low T and high P, off-cratonic by high T and low P, and cratonic by medium T and high P and (6) garnet peridotite xenoliths are of Archean or Proterozoic origin, whereas most of orogenic garnet peridotites are of Phanerozoic origin. Taking account of tectonic settings, a new orogenic garnet peridotite exhumation model, crust-mantle material mixing process, is proposed. The composition of lithospheric mantle is additionally constrained by comparisons and compiling of the off-cratonic, on-cratonic and orogenic garnet peridotite.  相似文献   

15.
Silicate-oxide symplectites in complex mineral intergrowths are relatively common in upper mantle xenoliths and in xenoliths in the Jagersfontein Kimberlite, South Africa.Harzburgites of olivine and high-Al (1.9–3.6 wt%), Ca (0.6–0.9 wt%) and Cr (0.3–0.9 wt%) enstatite contain symplectites of spinel and diopside, or spinel, diopside and lower-Al (0.8–2.2 wt%), Ca (0.1–0.4 wt%) and Cr (0.02–0.8 wt%) enstatite. From textures and mineral chemistries these symplectites are interpreted to have formed by mineral unmixing and migration from Al–Ca–Cr discrete enstatite to adjoining mineral interfaces.Garnet harzburgites are composed of large (0.5–1 cm) olivine, equally large discrete low-Al (0.6–1.1 wt%), Ca (0.1–0.5 wt%), and Cr (0.1–0.3 wt%) enstatite and smaller interstitial garnet, diopside, and high-Cr and low-Al spinel. Symplectites are composed of either spinel+diopside+garnet, or garnet+spinel. Spinel diopside garnet symplectites have cores of spinel+diopside, resembling symplectites inharzburgites, but surrounded by rims of garnet or garnet+undigested globular spinel. From textures and chemistries we suggest that the spinel+diopside cores formed from Ca-Al-Cr-rich orthopyroxene initially as a nonstoichiometric homogeneous single phase clinopyroxene enriched in Fe, Cr and Al. This was followed by decomposition of the clinopyroxene to diopside+spinel, and subsequent garnet formation in a prograde reaction with olivine or enstatite. In bothharzburgites andgarnet harzburgites the metastable cellular structures may also have formed by the simultaneous precipitation of pyroxene and spinel. In all cases there is a strongly preferred embayment of symplectite bodies into olivine. Olivine appears to have activated adjacent  相似文献   

16.
Optical microscopy, secondary electron microscopy and analytical electron microscopy were used to characterize crystallographic orientation relationships between oriented mineral inclusions and clinopyroxene (Cpx) host from the Hujialing garnet clinopyroxenite within the Sulu ultrahigh-pressure (UHP) terrane, eastern China. One garnet clinopyroxenite sample (2HJ-2C) and one megacrystic garnet-bearing garnet clinopyroxenite (RZ-11D) were studied. Porphyroblastic clinopyroxene from sample 2HJ-2C contains oriented inclusions of ilmenite (Ilm), spinel (Spl), magnetite and garnet, whereas clinopyroxene inclusions within megacrystic garnet from sample RZ-11D contain oriented inclusions of ilmenite and amphibole. Specific crystallographic relationships were observed between ilmenite/spinel plates and host clinopyroxene in sample 2HJ-2C and between ilmenite plates and host clinopyroxene in sample RZ-11D, i.e. [1[`1]00 1\bar{1}00 ]Ilm//[0[`1]0 0\bar{1}0 ]Cpx (0001)Ilm//(100)Cpx; and [110]Spl//[0[`1]0 0\bar{1}0 ]Cpx ([`1]11 \bar{1}11 )Spl//(100)Cpx. These inclusions are suggested to be primary precipitates via solid-state exsolutions. Most of the needle-like magnetite/spinel inclusions generally occur at the rims or along fractures of clinopyroxene within sample 2HJ-2C. Despite the epitaxial relation with host clinopyroxene, these magnetite/spinel needles would have resulted from fluid/melt infiltrations. Non-epitaxial garnet lamellae in clinopyroxene of sample 2HJ-2C were formed via fluid infiltration-deposition primarily along (010) and subordinately along (100) partings. Epitaxial amphibole plates (with a thickness <1 μm) and lamellae (with a thickness = 1–10 μm) in host clinopyroxene of sample RZ-11D were probably results of hydration processes, although amphibole plates could otherwise be interpreted as exsolution products. Temporal relations between mineral inclusions in each sample can be established, and a semi-quantitative P–T path for this garnet clinopyroxenite body was derived accordingly. The present results show that the Hujialing garnet clinopyroxenite may not have subducted to mantle depths as deep as 250 km during UHP metamorphism as suggested by previous studies. This study demonstrates that the crystallographic and temporal/spatial relationships between aligned inclusions and host minerals are essential to a correct genetic interpretation of metamorphic rocks.  相似文献   

17.
Two distinct ultramafic bodies occur in Baekdong and Bibong in the Hongseong area within Gyeonggi massif of South Korea. The Hongseong area is now extensively documented as an extension of the Dabie-Sulu collision belt in China. The Baekdong ultramafic body has a NWW elongation direction. This elongation trend is similar to the general trend of the Dabie-Sulu collision belt. The Bibong ultramafic body is elongated in a NNE direction and runs parallel to the direction of the main fault in the study area. The Baekdong ultramafic bodies show porphyroclastic and mylonitic textures while those at Bibong exhibit a mosaic texture. Both were grouped into peridotite and serpentinite based on their modal abundance of serpentine. In the olivine (Fo) vs. spinel [Cr# = Cr/ (Cr+Al)] diagram, both ultramafic rocks fall with in olivine spinel mantle array. The compositions of olivine, orthopyroxene and spinel indicate that the Baekdong ultramafic rock formed in deeper parts of the upper-mantle under passive margin tectonic setting. The SREE content of Baekdong ultramafic rock vary from 0.19 to 5.7, exhibits a flat REE pattern in the chondrite-normalized diagram, and underwent 5% partial melting. Conversely, large variation in SREE (0.5 21.53) was observed for Bibong ultramafic rocks with an enrichment of LREE with a negative slope and underwent 17 24% partial melting. The Baekdong ultramafic rocks experienced three stages of metamorphism after a high pressure residual mantle stage. The first stage of metamorphism occurred under the eclogite-granulite transitional facies (1123 911°C, >16.3 kb) the second under the granulite facies (825 740°C, 16.3 11.8 kb) and the third is the retrogressive metamorphism under amphibolite facies (782 718°C, 8.2 8.7 kb) metamorphism. The Baekdong ultramafic rocks had undergone high-P/T metamorphism during subduction of the South China Block, and experienced a fast isothermal uplift, and finally cooled down isobarically. Evidences for metamorphism were not identified in Bibong ultramafic rocks. Hence, the Baekdong ultramafic rocks with in the Hongseong area may indicate a link on the Korean counterpart of Dabie-Sulu collision belt between North and South China Blocks.  相似文献   

18.
The South Altyn orogen in West China contains ultra high pressure (UHP) terranes formed by ultra‐deep (>150–300 km) subduction of continental crust. Mafic granulites which together with ultramafic interlayers occur as blocks in massive felsic granulites in the Bashiwake UHP terrane, are mainly composed of garnet, clinopyroxene, plagioclase, amphibole, rutile/ilmenite, and quartz with or without kyanite and sapphirine. The kyanite/sapphirine‐bearing granulites are interpreted to have experienced decompression‐dominated evolution from eclogite facies conditions with peak pressures of 4–7 GPa to high pressure (HP)–ultra high temperature (UHT) granulite facies conditions and further to low pressure (LP)–UHT facies conditions based on petrographic observations, phase equilibria modelling, and thermobarometry. The HP–UHT granulite facies conditions are constrained to be 2.3–1.6 GPa/1,000–1,070°C based on the observed mineral assemblages of garnet+clinopyroxene+rutile+plagioclase+amphibole±quartz and measured mineral compositions including the core–rim increasing anorthite in plagioclase (XAn = 0.52–0.58), core–rim decreasing jadeite in clinopyroxene (XJd = 0.20–0.15), and TiO2 in amphibole (TiM2/2 = 0.14–0.18). The LP–UHT granulite facies conditions are identified from the symplectites of sapphirine+plagioclase+spinel, formed by the metastable reaction between garnet and kyanite at <0.6–0.7 GPa/940–1,030°C based on the calculated stability of the symplectite assemblages and sapphirine–spinel thermometer results. The common granulites without kyanite/sapphirine are identified to record a similar decompression evolution, including eclogite, HP–UHT granulite, and LP–UHT granulite facies conditions, and a subsequent isobaric cooling stage. The decompression under HP–UHT granulite facies is estimated to be from 2.3 to 1.3 GPa at ~1,040°C on the basis of textural records, anorthite content in plagioclase (XAn = 0.25–0.32), and grossular content in garnet (XGrs = 0.22–0.19). The further decompression to LP–UHT facies is defined to be >0.2–0.3 GPa based on the calculated stability for hematite‐bearing ilmenite. The isobaric cooling evolution is inferred mainly from the amphibole (TiM2/2 = 0.14–0.08) growth due to the crystallization of residual melts, consistent with a temperature decrease from >1,000°C to ~800°C at ~0.4 GPa. Zircon U–Pb dating for the two types of mafic granulite yields similar protolith and metamorphic ages of c. 900 Ma and c. 500 Ma respectively. However, the metamorphic age is interpreted to represent the HP–UHT granulite stage for the kyanite/sapphirine‐bearing granulites, but the isobaric cooling stage for the common granulites on the basis of phase equilibria modelling results. The two types of mafic granulite should share the same metamorphic evolution, but show contrasting features in petrography, details of metamorphic reactions in each stage, thermobarometric results, and also the meaning of zircon ages as a result of their different bulk‐rock compositions. Moreover, the UHT metamorphism in UHP terranes is revealed to represent the lower pressure overprinting over early UHP assemblages during the rapid exhumation of ultra‐deep subducted continental slabs, in contrast to the cause of traditional UHT metamorphism by voluminous heat addition from the mantle.  相似文献   

19.
Northern Victoria Land is a key area for the Ross Orogen – a Palaeozoic foldbelt formed at the palaeo‐Pacific margin of Gondwana. A narrow and discontinuous high‐ to ultrahigh‐pressure (UHP) belt, consisting of mafic and ultramafic rocks (including garnet‐bearing types) within a metasedimentary sequence of gneisses and quartzites, is exposed at the Lanterman Range (northern Victoria Land). Garnet‐bearing ultramafic rocks evolved through at least six metamorphic stages. Stage 1 is defined by medium‐grained garnet + olivine + low‐Al orthopyroxene + clinopyroxene, whereas finer‐grained garnet + olivine + orthopyroxene + clinopyroxene + amphibole constitutes the stage 2 assemblage. Stage 3 is defined by kelyphites of orthopyroxene + clinopyroxene + spinel ± amphibole around garnet. Porphyroblasts of amphibole replacing garnet and clinopyroxene characterize stage 4. Retrograde stages 5 and 6 consist of tremolite + Mg‐chlorite ± serpentine ± talc. A high‐temperature (~950 °C), spinel‐bearing protolith (stage 0), is identified on the basis of orthopyroxene + clinopyroxene + olivine + spinel + amphibole inclusions within stage 1 garnet. The P–T estimates for stage 1 are indicative of UHP conditions (3.2–3.3 GPa and 764–820 °C), whereas stage 2 is constrained between 726–788 °C and 2.6–2.9 GPa. Stage 3 records a decompression up to 1.1–1.3 GPa at 705–776 °C. Stages 4, 5 and 6 reflect uplift and cooling, the final estimates yielding values below 0.5 GPa at 300–400 °C. The retrograde P–T path is nearly isothermal from UHP conditions up to deep crustal levels, and becomes a cooling–unloading path from intermediate to shallow levels. The garnet‐bearing ultramafic rocks originated in the mantle wedge and were probably incorporated into the subduction zone with felsic and mafic rocks with which they shared the subsequent metamorphic and geodynamic evolution. The density and rheology of the subducted rocks are compatible with detachment of slices along the subduction channel and gravity‐driven exhumation.  相似文献   

20.
The Sanddal mafic‐ultramafic complex (SMUK) is a cluster of variably eclogitised mafic and ultramafic bodies that comprise the westernmost known eclogite facies locality in the North‐East Greenland eclogite province (NEGEP). Although there are no true eclogites in the SMUK, we interpret three distinct textural types of plagioclase replacement to record sequential stages in adjustment of SMUK olivine gabbro‐norites to eclogite facies conditions. The earliest stage, in which plagioclase was replaced by omphacite/spinel symplectite before nucleation of garnet (Type 1A & 1B) has not previously been described. Documentation of this texture provides clear evidence that, at least in some cases, garnet nucleation is delayed relative to nucleation of omphacite and is a rate‐limiting step for eclogitisation. Type 1C domains were produced by scattered nucleation of garnet in the same sample. In Type 2 domains, plagioclase was replaced by a layered corona with an outer layer of garnet, an inner layer of omphacite and an interior of inclusion‐rich plagioclase. In Type 3 domains, the omphacite layer was overgrown by the garnet rim, and omphacite is preserved only as inclusions in garnet. In more coarse grained leucogabbros, recrystallization was more complete, plagioclase replacement textures were less localised, and could not be divided into distinct stages. Plagioclase replacement in SMUK samples was not isochemical, and required diffusion of at least Mg and Fe from replacement of mafic phases in the surroundings. Strong compositional gradients in garnet reflect disequilibrium and were controlled by the different diffusion rates of Mg/Fe and Ca, different local chemical environments, and progress of the plagioclase breakdown reaction. The presence of small amounts of hydrous minerals (amphibole, phlogopite and clinozoisite) in local equilibrium in plagioclase domains of most SMUK samples indicates that a small amount of H2O was present during high pressure metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号