首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of a small population of ‘relict rock glaciers’ scattered across the main British mountain areas has previously been inferred from published cases of individual sites or local clusters. Discrete debris accumulations (DDAs) of widely differing character have been identified as ice‐debris landforms (whether ‘rock glaciers’ or ‘protalus lobes’) partly from morphological, sedimentological and topo‐locational evidence, but principally by analogy with both active and relict examples in present‐day arctic/alpine environments, with consequent palaeoclimate inferences. However, re‐interpretation of several supposed rock glaciers as rock slope failures has cast doubt on both the palaeoclimatic reconstructions and the origin of the remaining features. Issues of polygenesis and mimicry/equifinality have contributed to some previous misidentifications. We re‐evaluate the 28 candidate cases based on new field and image‐analysis evidence and place them on a continuum from no ice presence through passive ice presence and glacial shaping to emplacement onto glacier ice with consequent melt‐out topography. A null hypothesis approach (that there are no relict rock glaciers in the British mountains) is pursued, and the evidence indicates that none of the 28 cases clearly warrants classification as a relict rock glacier; their characteristics can be explained without recourse to any significant forward debris movement controlled or facilitated by incorporated or underlying ice as it deforms and melts out. However, only one‐third of the candidate DDAs are attributed in whole or part to rock slope failure (sensu stricto), with other debris sources including incremental rockfall, bedrock knolls with coarse debris veneer, protalus rampart and moraine. A few cases deserve more detailed investigation of their structure, morphology and sediments within a broader local glaciological/topographical context, with multitemporal/polygenetic evolution in mind. But it is for future researchers to demonstrate that deforming ice played an incontestable part in shaping these often enigmatic DDAs, given that other causes are simpler and commoner. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Compositionally, high-Nb basalts are similar to HIMU (high U/Pb) ocean island basalts, continental alkaline basalts and alkaline lavas formed above slab windows. Tertiary alkaline basaltic lavas from eastern Jamaica, West Indies, known as the Halberstadt Volcanic Formation have compositions similar to high-Nb basalts (Nb > 20 ppm). The Halberstadt high-Nb basalts are divided into two compositional sub-groups where Group 1 lavas have more enriched incompatible element concentrations relative to Group 2. Both groups are derived from isotopically different spinel peridotite mantle source regions, which both require garnet and amphibole as metasomatic residual phases. The Halberstadt geochemistry demonstrates that the lavas cannot be derived by partial melting of lower crustal ultramafic complexes, metasomatised mantle lithosphere, subducting slabs, continental crust, mantle plume source regions or an upper mantle source region composed of enriched and depleted components. Instead, their composition, particularly the negative Ce anomalies, the high Th/Nb ratios and the similar isotopic ratios to nearby adakite lavas, suggests that the Halberstadt magmas are derived from a compositionally variable spinel peridotite source region(s) metasomatised by slab melts that precipitated garnet, amphibole, apatite and zircon. It is suggested that high-Nb basalts may be classified as a distinct rock type with Nb > 20 ppm, intraplate alkaline basalt compositions, but that are generated in subduction zones by magmatic processes distinct from those that generate other intraplate lavas.  相似文献   

3.
Over the last 30 years, a growing body of research has shown that first-order control of the elevation of Earth's surface is exercised by thermal anomalies in the upper asthenosphere. One line of research is to test models and observations of mantle behaviour against the sedimentary record. A second line of research is to use the sedimentary record to further understanding of mantle behaviour. Here this second line of research is adopted: a particular hypothesis of mantle behaviour is tested against the Quaternary sedimentary record of the Thames valley, England. Schoonman et al. (2017) have proposed that a warm finger of mantle material extending from the Icelandic plume underlies southern England at the present day. That warm finger would represent the distal end of the influence of the Icelandic plume in this area, and would have advanced broadly from west to east, causing a progressive tilt of the surface of the Thames valley towards the east. The warm-finger hypothesis is supported by the evidence reviewed here. That evidence consists of two main sets of observations, both sets established beyond reasonable doubt by many researchers over many years. First, there is the progressive increase in elevation westward from the present-day coast of the North Sea of the 2.5–2 Ma shallow-marine Red and Norwich Crags. Second, there is the subsequent Quaternary record of progressive eastward tilting of the Thames valley shown in the river terraces.  相似文献   

4.
5.
Global geomagnetic data are inverted for detecting a high-conductivity layer at depths of 1500–2000 km to test the hypothesis of a magnesiowüstite phase transition in the lower mantle. We present the results of processing of both synthetic and global data—average monthly values of the geomagnetic field from 1920 to 2009. The inverted global data are consistent with the possible existence of a high-conductivity layer at great depths in the lower mantle.  相似文献   

6.
We consider the problem about determination of characteristics of a lava flow from the physical parameters measured on its surface. The problem is formulated as an inverse boundary problem for the model simulating the dynamics of a viscous heat-conducting incompressible inhomogeneous fluid, where, on the basis of additional data at one part of the model boundary, the missing conditions at another part of the boundary have to be determined, and then the characteristics of fluid in the entire model domain have to be reconstructed. The considered problem is ill-posed. We develop a numerical approach to the solution of the problem in the case of a steady-state flow. Assuming that the temperature and the heat flow are known at the upper surface of the lava, we determine the flow characteristics inside the lava. We compute model examples and show that the lava temperature and flow velocity can be determined with a high precision when the initial data are smooth or slightly noisy.  相似文献   

7.
Belgium is considering a clay formation as a possible disposal medium for the storage of conditioned radioactive waste.The clay rheology at great depth is studied by laboratory tests and in situ experiments performed from an underground laboratory build at 223 m depth in the Boom clay formation present in the N-E part of Belgium under the nuclear site Mol-Dessel. The aim of this research consists in simulating the excavation, in unfrozen clay, of large diameter galleries to be dug for the final disposal site.A finite element program using Vyalov's creep law was chosen as a first approach. The determination of the rheological parameters was made on the basis of the available laboratory experiments. Different numerical simulations were performed in order to reproduce in situ experiments, making possible a first refinement of the parameters.A shaft and gallery excavation are now being simulated, and numerical displacements will be compared to experimental observations.  相似文献   

8.
In studying the petrogenesis of intra-plate ocean island basalts(OIB) associated with hotspots or mantle plumes, we hypothesized that the two large-low-shear-wave-velocity provinces(LLSVPs) at the base of the mantle beneath the Pacific(Jason) and Africa(Tuzo) are piles of subducted ocean crust(SOC)accumulated over Earth's history. This hypothesis was formulated using petrology, geochemistry and mineral physics in the context of plate tectonics and mantle circulation. Because the current debate on the origin of the LLSVPs is limited to the geophysical community and modelling discipline and because it is apparent that such debate cannot be resolved without considering relevant petrological and geochemical information, it is my motivation here to objectively discuss such information in a readily accessible manner with new perspectives in light of most recent discoveries. The hypothesis has the following elements:(1) subduction of the ocean crust of basaltic composition to the lower mantle is irreversible because(2) SOC is denser than the ambience of peridotitic composition under lower mantle conditions in both solid state and liquid form;(3) this understanding differs from the widespread view that OIB come from ancient SOC that returns from the lower mantle by mantle plumes, but is fully consistent with the understanding that OIB is not derived from SOC because SOC is chemically and isotopically too depleted to meet the requirement for any known OIB suite on Earth;(4) SOC is thus the best candidate for the LLSVPs, which are, in turn, the permanent graveyard of SOC;(5) the LLSVPs act as thermal insulators, making core-heating induced mantle diapirs or plumes initiated at their edges, which explains why the large igneous provinces(LIPs) are associated with the edges of the LLSVPs;(6) the antipodal positioning of Jason and Tuzo represents the optimal momentum of inertia, which explains why the LLSVPs are stable in the spinning Earth.  相似文献   

9.
Lithium isotope geochemistry is increasingly being used to trace deep-earth processes, reflecting the observed large variation of Li isotope ratios in mantle-derived rocks, including peridotite xenoliths associated with ancient continents. We briefly review the Li isotopic compositions of major geochemical reservoirs, the assumed mechanisms of Li isotopic fractionation, and, in particular, the origins of isotopically light Li in mantle-derived rocks based on the latest developments in Li isotope geochemistry. Comparison of Li isotope data with existing Sr-Nd isotope ratios reflects the subduction-recycling of ancient oceanic crust and the reappearance of Li in volcanic rocks. This circulation may play an important role in generating the isotopically light-Li component in the mantle – perhaps the enriched mantle end member defined by the Sr-Nd isotopic compositions of oceanic basalts.  相似文献   

10.
Benjamin Gardner 《Geoforum》2009,40(5):781-783
Rather than making a uniform case for understanding the neoliberalization of ranching and pastoralism, the articles in this volume show how everyday practices are made through historically and geographically specific struggles over the characteristics of production, exchange and rule, in which livestock play a particularly important role. Collectively, I believe the articles in this volume highlight the significant relationship between cattle and capitalism, and make a compelling argument that to understand the material implications of neoliberalism we need to pay more attention to livestock as an important and rapidly changing medium of livelihood production and accumulation strategy around the world.  相似文献   

11.
The crustal section beneath amphibolite Nied?wied? Massif (Fore-Sudetic Block in NE Bohemian Massif), modelled on the basis of geological and seismic data, is dominated by gneisses with subordinate granites (upper and middle crust) and melagabbros (lower crust). The geotherm was calculated based on the chemical analyses of the heat-producing elements in the rocks forming the crust and the measurements of their density and heat conductivity. The results were verified by heat flow calculations based on temperature measurements from 1,600?m deep well in the Nied?wied? Massif and by temperature–depth estimates in mantle xenoliths coming from the nearby ca. 4.5?My basanite plug in Lutynia. The paleoclimate-corrected heat flow in the Nied?wied? Massif is 69.5?mW?m?2, and the mantle heat flow is 28?mW?m?2. The mantle beneath the Massif was located marginally relative to the areas of intense Cenozoic thermal rejuvenation connected with alkaline volcanism. This results in geotherm which is representative for lithosphere parts located at the margins of zones of continental alkaline volcanism and at its waning stages. The lithosphere–asthenosphere boundary (LAB) beneath Nied?wied? is located between 90 and 100?km depth and supposedly the rheological change at LAB is not related to the appearance of melt.  相似文献   

12.
Mountain domes rising to ≈ 6600 m along Tibet's Tanggula range herald the Eocene intrusion of calcalkaline granites into terranes accreted much earlier. Together with coeval, cogenetic volcanics, such intrusives, which have similar crystallization and cooling ages, may be part of an ESE-trending belt cutting central Tibet in half. This magmatic belt may have marked a former northern boundary of the plateau, testifying to S-directed subduction of the Asian mantle. Such subduction would have developed soon after India's collision but long before the rise of the plateau's present rims, along one of central Tibet's Mesozoic sutures.  相似文献   

13.
The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 m2/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 m2/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits.  相似文献   

14.
The high-K calc-alkaline volcanic rocks along the Neogene Volcanic Province of SE Spain represent crustal anatectic melts mixed with mantle components during the opening of the Alborán Sea. Partially melted metapelitic enclaves, along with the geochemical signature, provide evidence of their crustal source. U–Pb SHRIMP geochronology on monazite and zircon from enclaves and their hosting lavas in the localities of El Hoyazo, Mazarrón and Mar Menor reveals variable delays between the melting at depth and the eruption of the volcanics. These data indicate that: (1) the most important event of anatexis in the Neogene spanned at least the 3 m.y. interval between 12 and 9 Ma; (2) there is no trend in age of crustal melting; and (3) the delay between magma generation and extrusion varies from more than 3 m.y. at El Hoyazo to ~0.5 m.y. and possibly 2.5 m.y. at Mar Menor, with no significant delay measurable at Mazarrón. The variable time delay between anatexis and lava extrusion indicates that radiometric ages of volcanics may provide misleading information on the timing of magma genesis occurring at depth. This highlights the pitfall of basing detailed geodynamic models on volcanic extrusion ages alone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Summary Fine-scale igneous layering consisting of alternating bands of chromitite and plagioclase often occurs in the Bushveld Complex where it is commonly known as stringers. The origin of these features has been unclear but they do have both quantitative and qualitative characteristics of a type of microsegregation (compositional nonhomogeneity) known as solute banding which frequently occurs in solidifying industrial melts. The cause of solute banding is due to temperature fluctuations arising from unsteady convection in the melt which generates cotectic shifting at the solidification front, leading to alternating deposition of one phase, then another.
Zusammenfassung Feiner magmatischer Lagenbau, der aus alternierenden Lagen von Chromitit und Plagioklas besteht, ist häufig im Bushveld zu beobachten und wird weithin als Stringers bezeichnet. Die Entstehung dieser Erscheinung war bisher nicht geklärt, aber sie zeigt sowohl quantitative wie qualitative Aspekte einer Art von Mikrosegregation (Inhomogenität der Zusammensetzung), die als Solute Banding bekannt ist und häufig in erstarrenden industriellen Schmelzen zu beobachten ist. Der Grund für Solute Banding liegt in Temperaturschwankungen, die auf ungleichmäßige Konvektion in der Schmelze zurückgeht. Letztere führt zu Verschiebung der kotektischen Positionen an der Verfestigungsfront, die schliesslich in alternierender Ablagerung der beiden Phasen resultiert.


With 3 Figures  相似文献   

16.
Siberian Traps Large Igneous Province (STLIP) is one of the most voluminous volcanic provinces on Earth. The dominant erupted rocks are low-Ti basalts, which make up 80% by volume of the classical Noril’sk lava sequence. In the west Siberian basin and Maymecha-Kotuy area, the low-Ti basalts make up about 99% and 50% by volume, respectively. Dolerite sills in the Angara-Taseevskaya Syncline at the southeastern STLIP exhibit trace element patterns and Sr isotope ratios typical of the low-Ti basalts of the Noril’sk sequence. The most Mg-rich (MgO 9.5–11 wt%) and hence least differentiated dolerites are characterized by trace element patterns with Ta-Nb depletion, low Ce/Pb and high Sr/Pr. These trace element features are similar to water-saturated, mantle wedge-derived island arc basalts. These imply an important role of subduction fluid-derived trace elements in the source of melting beneath the Angara-Taseevskaya Syncline and other regions of the STLIP. Less magnesium rocks (MgO 3.8–6.1 wt%) with less prominent Ta-Nb depletion, higher Ce/Pb and lower Sr/Pr could be produced via olivine-plagioclase fractionation of primary high-magnesium melts.  相似文献   

17.
With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forêts in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing revealed significant results from 10 out of 16 sites. Indication for 1-D structures was found in the shortest periods, 2-D effects in the periods up to 40 s, and 3-D effects in the long period range. Since 3-D effects were found in the longer periods, 2-D inversion was carried out for periods smaller than 40 s. The results of the inversion are consistent with the geology of the geothermal site and distinguish well the sediments from the granitic basement including the structures given by the faults. A conductive anomaly with a resistivity of about 3 Ωm has been found at a depth down to 2000 m in the area of the Soultz and Kutzenhausen faults, which is attributed to geothermal processes.  相似文献   

18.
Abstract

In the Radicondoli–Travale area of the Larderello geothermal field (Italy) new structural and petrologic data on some metamorphic units, cored from geothermal wells, reveal the existence of a wide complex of hornfels rocks. The development of the complex is related to the emplacement of Neogene magmatic rocks at a shallow depth within a Permo–Triassic terrigenous metasedimentary sequence of a low metamorphic grade. The sequence was subjected to alpine tectonic-metamorphic events. This reconstruction gives new insights in the tectonic setting of metamorphic units below the Tuscan Nappe, in southern Tuscany. Particularly, the medium and high grade metamorphic rocks seem strictly related to the development of Neogene thermal aureoles and do not represent remnants of a Paleozoic basement. Furthermore, in this sector of the Larderello geothermal system, the presence of deep geothermal reservoir at a depth of 3 000 m is mainly linked to the enhanced permeability caused by fracturing in these hornfels rocks. This fracturing is a consequence of the dehydration reaction occurring in the metapelites due to Neogene thermal metamorphism. This mechanism allowed the development of a long-lived hydrothermal system, shown by the secondary mineralogical assemblages. These testify the presence of at least two hydrothermal stages which are well preserved in the less permeable units. © 2000 Editions scientifiques et médicales Elsevier SAS  相似文献   

19.
20.
《Geodinamica Acta》2000,13(6):345-366
In the Radicondoli–Travale area of the Larderello geothermal field (Italy) new structural and petrologic data on some metamorphic units, cored from geothermal wells, reveal the existence of a wide complex of hornfels rocks. The development of the complex is related to the emplacement of Neogene magmatic rocks at a shallow depth within a Permo–Triassic terrigenous metasedimentary sequence of a low metamorphic grade. The sequence was subjected to alpine tectonic-metamorphic events. This reconstruction gives new insights in the tectonic setting of metamorphic units below the Tuscan Nappe, in southern Tuscany. Particularly, the medium and high grade metamorphic rocks seem strictly related to the development of Neogene thermal aureoles and do not represent remnants of a Paleozoic basement. Furthermore, in this sector of the Larderello geothermal system, the presence of deep geothermal reservoir at a depth of 3 000 m is mainly linked to the enhanced permeability caused by fracturing in these hornfels rocks. This fracturing is a consequence of the dehydration reaction occurring in the metapelites due to Neogene thermal metamorphism. This mechanism allowed the development of a long-lived hydrothermal system, shown by the secondary mineralogical assemblages. These testify the presence of at least two hydrothermal stages which are well preserved in the less permeable units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号