首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The Alleppey Platform is an important morphological feature located in the Kerala-Konkan basin off the southwest coast of India. In the present study, seismic reflection data available in the basin were used to understand the sedimentation history and also to carry out integrated gravity interpretation. Detailed seismic reflection data in the basin reveals that:(1) the Alleppey Platform is associated with a basement high in the west of its present-day geometry(as observed in the time-structure map of the Trap Top(K/T boundary)),(2) the platform subsequently started developing during the Eocene period and attained the present geometry by the Miocene and,(3) both the Alleppey platform and the Vishnu fracture zone have had significant impact on the sedimentation patterns(as shown by the time-structure and the isochron maps of the major sedimentary horizons in the region). The 3-D sediment gravity effect computed from the sedimentary layer geometry was used to construct the crustal Bouguer anomaly map of the region.The 3-D gravity inversion of crustal Bouguer anomaly exhibits a Moho depression below the western border of the platform and a minor rise towards the east which then deepens again below the Indian shield. The 2-D gravity modelling across the Alleppey platform reveals the geometry of crustal extension,in which there are patches of thin and thick crust. The Vishnu Fracture Zone appears as a crustal-scale feature at the western boundary of the Alleppey platform. Based on the gravity model and the seismic reflection data, we suggest that the basement high to the west of the present day Alleppey platform remained as a piece of continental block very close to the mainland with the intervening depression filling up with sediments during the rifting. In order to place the Alleppey platform in the overall perspective of tectonic evolution of the Kerala-Konkan basin, we propose its candidature as a continental fragment.  相似文献   

2.
In an attempt to constrain a Late Paleozoic tectono-metamorphic event along the Lancang River Zone, fourteen samples were processed for K/Ar dating on fine mineral fractions and detrital muscovites from this zone in southwestern Yunnan, China. The samples include mica schists, mylonites and gneisses from the Proterozoic Lancang Group and phyllites from the western part of the Simao Basin. In addition, one Ar/Ar analysis was performed on separated phengites from a blueschist of the central part of the Lancang Group. The results reveal a considerable spread of ages; the tectonic evolution of the zone is constrained by the new data, which accentuate two temporally separate, but spatially overlapping events: (i) a Late Carboniferous high-P/low-T metamorphism related to an east-vergent, Late Paleozoic thrust belt, inverting a Devonian to Carboniferous marginal basin of the Yangtze-Platform, and (ii) an upper Permian and Triassic low-P/high-T belt caused by a post-orogenic stage of rifting with distinct petrological and geochemical similarities of the igneous rocks to the Emeishan Large Igneous Province. These results imply that no active continental margin accounts for the subduction of the Paleotethys main branch, proposed to be recorded either along the Lancang River or the Changning-Menglian Belt.  相似文献   

3.
Along the Rio Muni transform margin, the transition from continental to oceanic crust occurs across a region of approximately 75-km width. The crust in this transition region, termed proto-oceanic crust (POC), is neither purely oceanic nor continental in composition and structure. Improved seismic reflection images from the PROBE deep-imaging dataset, combined with gravity modelling, have shed new light on the structural architecture of the margin and the composition of the POC. On these newly migrated seismic reflection sections, four fracture zones associated with large steps in the Moho are identified, splitting the POC into three segments. Models in which these segments are composed of oceanic or stretched continental crust do not provide satisfactory predictions of the gravity anomaly. A model of serpentinized peridotite for two segments of POC, with the third segment composed of oceanic crust in between, does satisfy the observed gravity anomaly. Three alternative geological scenarios are proposed to explain the segmentation and composition of the POC: (a) serpentinized upper mantle becoming unroofed and emplaced at basement surface level along detachment surfaces confined to discrete segments by the fracture zones, (b) oblique-slip on transform faults that allow the circulation of water into the mantle and emplacement of serpentinized upper mantle material; or (c) intense faulting of anomalous oceanic crust as a result of magma depletion allowing hydrothermal circulation and the emplacement of serpentinized peridotites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号