首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stratigraphic and structural correlations between the Palaeozoic massifs of eastern Morocco and northern Algeria allow three tectonic domains to be distinguished: (1) The cratonic zone, i.e. the West African platform which remained outside the Variscan chain and its peripherical margin (Moroccan Anti-Atlas and Algerian Ougarta); (2) a WSW-ENE trending zone, over 1500 km from Marrakech to Kabylia and Calabria (in their assumed Palaeozoic location). — This zone was characterized during the Late Palaeozoic by a continuous instability indicated by the development of successive turbiditic basins and a major orogeny at the Devonian-Carboniferous boundary; and (3) central and western Morocco, which corresponds to the external zones of the European Hercynides.The Marrakech-Kabylia zone separates the Variscan domain from the stable and undeformed West African craton. During Early Palaeozoic times it began as an extensive or transtensive zone. It has been deformed by the Late Devonian orogeny and by Carboniferous and Permian reactivation. The zone represents the southern limit of the Hercynian chain and is distinguished by its transcurrent regime throughout the Late Palaeozoic. Correspondence to: A. Piqué  相似文献   

2.
赵志刚  王鹏  祁鹏  郭瑞 《地球科学》2016,41(3):546-554
东海盆地处于西太平洋俯冲带前缘,是发育在华南克拉通基底之上的,以晚白垩世-新生代沉积为主的新生代盆地.东海盆地性质是在活动大陆边缘减薄陆壳之上的,由于洋-陆俯冲消减所引起的张裂、拉伸作用而形成的弧后裂谷型盆地,是西太平洋众多“沟-弧-盆”体系的一部分.东海盆地陆架外缘隆起控制着东海盆地的演化过程,该地质单元形成于晚白垩世,是陆缘隆起和增生楔的复合体,中新世后由于菲律宾海板块的活动而解体为现今的钓鱼岛隆褶带和琉球隆起.结合对陆架外缘隆起的研究后认为,东海盆地晚白垩世以来的演化历程具有3大构造阶段,即:第一阶段,古新世-中始新世西部坳陷形成发展期;第二阶段,中始新世-渐新世东部坳陷形成发展期,其中,中晚始新世太平洋板块的转向是东、西部坳陷构造迁移的分界点;第三阶段,中新世-全新世,东海盆地进入到菲律宾板块影响时期,原先的构造格局开始分解.   相似文献   

3.
The Adoudounian Basal Series within the western part of the Moroccan Anti-Atlas Mountains was deposited in a varying palæogeographical setting. The first deposits of volcaniclastic and carbonate sediments accumulated in small shallow basins under tectonic control. Then, sedimentation became siliciclastic and volcano-detrital with coastal and deltaic sedimentation in the western area and lagoon-lacustrine in the eastern area. Synsedimentary alkaline volcanism, associated with normal faulting, indicates a within-plate extensional tectonic regime related to rifting, which affected the northern margin of the West African Craton, during Late Neoproterozoic-Early Cambrian times.  相似文献   

4.
应用平衡剖面技术探讨了塔中隆起东、西段古生代构造演化的时空差异性。结果表明,早奥陶世塔中西段在伸展背景下拉张沉降,而塔中东段已出现隆起雏形。中奥陶世-晚奥陶世,塔中隆起构造形态基本定型,东段构造变形和隆升强度高于西段。该区东强西弱的分段差异性持续到中泥盆世末期。推测与来自阿尔金方向的压扭应力自东向西逐渐递减有关,同时形成了塔中隆起东敛西散的构造形态。  相似文献   

5.
Tertiary folds of the central and eastern part of the Algerian Atlas were studied in order to assess their kinematics and regimes of deformation. Folds developed following two main phases of deformation during the Eocene and the Pliocene. The NE-SW trending Eocene folds show a clockwise rotation of fold axis with depth, noncylindrical geometry and a right-stepping en echelon configuration. Early secondary structures inside each fold are also rotated clockwise with respect to the younger folds. These data are in agreement with progressive ‘simple shear’ deformation. Pliocene folds strike E-W and display a cylindrical geometry. Associated Plio-Quaternary brittle structures show no rotational path. These observations are compatible with ‘pure shear’ style of deformation. These results, in combination with focal mechanism solutions, have important implications for the understanding of the kinematic evolution of the western segment of the African-European plate boundary. For Algeria they imply that transcurrent motion during the Paleogene was followed by coaxial shortening with a NNW direction during Neogene-Quaternary times. Comparison with published data for Morocco and Tunisia suggests that this transcurrent regime developed from west to east continuing from the Middle Jurassic through to the Miocene.  相似文献   

6.
The Northwestern (Maghreb) boundary of the Nubia (Africa) Plate   总被引:1,自引:0,他引:1  
Alain Mauffret   《Tectonophysics》2007,429(1-2):21-44
A study of the present compressional deformation of the Northwestern (Maghreb) Nubia (Africa) margin is derived from the analysis of more than 20,000 km of seismic profiles. In the western part the compression is distributed in a large zone with on-land compression in Algeria, mainly strike-slip deformation on the Algerian margin and folds and strike-slip faulting in Eastern Spain. In the middle of the Algerian margin, around Algiers, the evidences of compression become more obvious. In this area a ridge trending N–S that is interpreted as a middle to late Miocene spreading center interacted with the transpressional margin that trends E–W. North of the location of the Boumerdes–Zemmouri earthquake the oceanic crust is deformed by blind thrusts up to 60 km from the coast. These thrusts are south dipping and with the northward dipping thrusts located onshore form a wedge that maybe a positive flower structure at a crustal scale related to the right-lateral transpression of the margin. In the eastern part of the Northwestern (Maghreb) Nubia (Africa) Deformed Belt, off eastern Algeria and Tunisia, the deformation is more intense but limited to the north by the continental slope. Large late Miocene Tortonian folds are cut by the Messinian erosional surface but the present deformation is also evident. It is suggested that the deformation with a double vergence may be followed up to the north of Sicily. After the docking (18 Ma) of the Kabylies to the Africa Plate, the crust has been thinned and the Algerian Basin opened during the middle-late Miocene with an E–W direction. From the late Miocene to the Present the margin has been rethickened by transpression and uplifted.  相似文献   

7.
8.
《Quaternary Science Reviews》2007,26(22-24):2823-2843
Fluvial and karstic data sets indicating Late Cenozoic surface uplift in the eastern United States are modelled for the first time using a technique, incorporating coupling between surface processes and flow in the lower continental crust, which has been extensively used for modelling similar data sets elsewhere in the world, notably in Europe. Distinct phases of lower-crustal flow forcing, starting in the early Middle Miocene, Late Pliocene, and late Early Pleistocene, are evident, as observed elsewhere, and relate to combinations of cyclic surface loading (by sea-level variations and ice loads) and to variations in regional erosion rates, as elsewhere. However, the detailed uplift histories inferred are rather different from those indicated in many other regions, notably Europe, primarily because of different properties of the crust. In particular, in the Late Proterozoic/Phanerozoic crust of the Appalachians, the mobile lower-crustal layer seems to be relatively thick, causing a prolonged uplift response for each phase of lower-crustal flow forcing, whereas in the Early Proterozoic crust of the Yavapai crustal province farther west, underlain by a thick basal mafic layer, this mobile layer is much thinner, leading to a very different response consisting of abrupt alternations of uplift and subsidence, as is also observed in other regions of Early Proterozoic crust. Another important difference relative to western and central Europe is the much smaller number of terraces in the eastern US rivers that have been studied. The general applicability of this type of physics-based modelling technique is thus confirmed.  相似文献   

9.
沅江凹陷为第四纪洞庭盆地东部的一个次级凹陷。通过地表地质调查和钻孔资料,在沅江凹陷东缘北部鹿角地区第四纪构造、沉积及地貌特征研究基础上,探讨并提出其构造-沉积演化过程:早更新世早期洪湖-湘阴断裂和荣家湾断裂相继活动,断裂以西地区断陷沉降并沉积,以东地区则构造抬升而遭受风化剥蚀。早更新世末期凹陷区东部构造反转抬升并遭受侵蚀。中更新世早期和中期凹陷区断陷沉降并接受沉积。中更新世晚期研究区整体抬升而遭受剥蚀。晚更新世西部主凹陷区在稳定或弱沉降并形成泥质沉积,东部间歇性抬升。在上述中更新世晚期开始的构造抬升的同时,研究区东部产生了自东向西、自南向北的构造掀斜。全新世构造总体稳定,西部洞庭湖区形成湖冲积。区域上,第四纪洞庭盆地构造性质经历了早期断陷到晚期坳陷的转变。  相似文献   

10.
Structural interpretation of surface and subsurface data in the Eastern foreland basins of Tunisia, allows us to recognize positive inversion structures, i.e. related to compressional events, expressed and recorded in the Paleogene sedimentary pile of the Atlas domain. These episodes are followed by a period of relative tectonic quiescence during Oligocene-Early Miocene with development of extensional structures with slightly tilted panels, grabens and locally the development of listric normal faults branched at depth on “décollement” levels.Comparison of the seismic interpretations and field data collected along the South Atlas Front as well as in the Atlas belt, allows us to propose a tectonic scenario at the scale of Eastern Tunisia Atlas. In particular, we emphasise the role of the so-called “Atlas event” (Middle-Late Eocene), which was initially defined in Algeria but poorly outlined in Tunisia. We will show that the tectonic agenda defined in Eastern Tunisia is consistent with the one proposed elsewhere in the Maghreb allowing us to propose a unified view of the geodynamic evolution of the whole Atlas system during this period.The negative inversion recorded during Oligocene-Early Miocene along with the occurrence of synsedimentary normal faults are related to an increase of the subsidence rate in the frame of continuous shortening coeval to basin formation in the front of the Atlas. The whole Oligo-Miocene evolution results from two different mechanisms: flexuration in the front of the Atlas and the onset of the extension of the Pantelleria-Linosa-Malta rift system of central Mediterranean, which attained a climax stage later during Pliocene-Quaternary.  相似文献   

11.
第四纪洞庭盆地赤山隆起与安乡凹陷升降运动的沉积记录   总被引:12,自引:0,他引:12  
通过地表地质调查和钻井资料,对第四纪洞庭盆地南部赤山隆起及其西侧安乡凹陷的沉积和地貌特征进行研究,进而探讨二者的升降过程。赤山隆起为居于洞庭盆地南部的小型抬升断块,主要受东、西边界正断裂所控制,长约18 km,宽4~5 km。隆起内早更新世汨罗组和中更新世新开铺组、白沙井组组成多级阶地。安乡凹陷内充填200~300 m厚的河流和湖泊相沉积,自下而上依次为早更新世华田组、汨罗组,中更新世洞庭湖组,晚更新世坡头组,全新世湖积、冲积等。地貌与沉积特征表明,早更新世—中更新世中期赤山隆起总体表现出抬升期与稳定期交替的脉动式抬升,而安乡凹陷则表现出缓慢与快速沉降交替的幕式沉降特征;前者构造较稳定期和构造抬升期分别对应于后者缓慢沉降期和快速沉降期。中更新世晚期二者因区域构造反转而整体抬升并遭受剥蚀。晚更新世—全新世安乡凹陷在拗陷背景下接受沉积。上述第四纪早期赤山隆起脉动式抬升与安乡凹陷幕式沉降的对应关系,为洞庭盆地与周边隆起的盆—山耦合过程提供了约束,同时暗示盆地断陷活动可能与地幔上隆导致中地壳物质自凹陷向周边迁移有关。  相似文献   

12.
李志刚  刘静  贾东  孙闯  王伟  姚文倩 《地质通报》2016,35(11):1829-1844
2008年汶川地震(Mw 7.9)同震滑移结果表明,今地壳缩短为近EW向,与龙门山褶皱冲断带斜交。这一斜向逆冲作用的准确起始时间一直未得到很好的约束。基于龙门山南段山前大邑背斜区三维地震解释和构造建模,结合野外地质调查和年代学数据,确定了晚新生代存在NE向和近NS向2期构造变形。120km长的NS向构造切割了NE向构造,表明近NS向构造形成时间较晚。山前大邑和邛西背斜区近NS向断层和褶皱的活动,均反映了龙门山南段局部或区域上水平最大主应力方向的转换过程,渐新世—早上新世的NW—SE向转变为晚上新世—全新世的近EW向。龙门山南段山前发育的NS向构造和汶川地震同震变形均反映出青藏高原东缘最新的EW向地壳缩短过程,为理解青藏高原东缘的隆升机制提供了新的视角。  相似文献   

13.
Thermal modeling techniques constrained by published petrological and thermo-chronometric data were applied to examine late orogenic burial and exhumation at a Variscan suture zone in Central Europe. The suture separates the southern Rhenohercynian zone from the Mid-German Crystalline Rise and traces the former site of a small oceanic basin. Closure of this basin during Variscan subduction and subsequent collision of continental units were responsible for different tectono-metamorphic evolutions in the suture's footwall and hanging wall. Relative convergence rates between the southern Rhenohercynian zone and western Mid-German Crystalline Rise can be inferred from the pressure-temperature-time evolution of the Northern Phyllite Zone. During Late Viséan-Early Namurian times, horizontal thrusting velocities were at least 20 mm/a. Thermal modeling suggests that exhumation of the Mid-German Crystalline Rise occurred temporarily at rates of more than 3 mm/a. Such rapid exhumation cannot be produced by erosion only, but requires a substantial contribution of extensional strain. Exhumation by upper crustal extension occurred contemporaneously with convergence and is explained by continuous underplating of crustal slices and thrusting along faults with ramp-flat geometry. Finally, implications for the tectono-metamorphic history of the study area and the thermal state of the crust during late Variscan exhumation are discussed.  相似文献   

14.
The western Anti-Atlas was formed by a Precambrian basement in the core of anticlines, surrounded by a Neoproterozoic and Palæozoic cover. The structural study of the Tata regional rocks shows a heterogeneous deformation, characterised especially by two types of folds in two orthogonal directions: north-south to north-northeast-south-southwest-trending and east-west-trending.The north-south structures are present in all of the Palæozoic cover and belong to the major Variscan compression of Late Carboniferous age by a comparison of the other domains of the western Anti-Atlas. Alternatively, east-west folding is assigned only to the lower part of the cover and consists of a ductile heterogeneous deformation, especially marked at the basement-cover interface. These folds are associated with a subhorizontal cleavage, indicating a southern vergence of the structures. A discussion of the age and the tectonic style of these structures is proposed, as well as their significance within the Variscan belt along the northern margin of the West African Craton.  相似文献   

15.
岷江断裂带晚新生代逆冲推覆构造:来自钻孔的证据   总被引:6,自引:0,他引:6  
岷江断裂带由2个不同性质的断裂组成:早期岷江逆冲断裂和晚期岷江正断裂。野外地质调查和钻孔资料发现在岷江西侧山麓之下存在一套厚度大于110m的早更新世灰黑色湖相地层,三叠系灰岩逆掩在这套湖相地层之上。由此确定岷江断裂是一条西倾的逆冲断层,逆冲作用发生在中更新世之前。在中更新世时期,岷江逆冲断裂发生构造负反转,在其前缘形成一条东倾的正断层,它控制了岷江上游漳腊盆地的发育。本文认为,岷山地区现今地震活动并非受控于岷江断裂带,而可能受到虎牙断裂及岷山隆起深部滑脱构造的控制,岷江断裂带位于该深部滑脱构造的上部。进而认为逆冲—推覆构造样式可能是青藏高原东缘晚新生代造山和快速隆升的主要变形机制。  相似文献   

16.
上扬子西部滇东、黔西茅口组之上多为峨眉山玄武岩所覆盖,长期以来人们一直认为两者不存在沉积间断和地层剥蚀。作者通过野外实地考察和室内综合研究首次系统地厘定上扬子西部茅口组顶部的古喀斯特地貌,其形态多种多样,包括起伏不平的古剥蚀面、溶蚀洼地、溶斗、峰林、溶丘、洞穴以及洞穴充填物和古剥蚀面上红壤土。古喀斯特地貌在一个地区的地质发展中具有重要的意义,它代表了一次地壳上升运动。本区古喀斯特的系统研究不仅丰富了中国古喀斯特研究的内容,而且对确定云南地区东吴运动的存在和峨眉山地幔柱的活动提供了重要佐证。  相似文献   

17.
利用深水区的二维、三维地震资料开展构造-沉积演化研究,鲁伍马盆地二叠纪—早侏罗世为冈瓦纳陆内—陆间裂谷活动期,发育河流—湖泊沉积;中侏罗世—早白垩世为马达加斯加漂移期,位于剪切型大陆边缘,发育海陆过渡相沉积;晚白垩世—渐新世为被动大陆边缘期,深水沉积广泛发育,重力流沉积延伸至戴维隆起带;中新世—第四纪为东非裂谷海域分支活动期,陆坡和凯瑞巴斯地堑发育深水重力流沉积。盆地垂向上形成"断—坳—断"结构,二叠纪—早侏罗世及中新世—现今发育两期明显的裂谷活动。马达加斯加漂移期的海相泥岩为深水区的主力烃源岩,古近纪的陆坡深水浊积砂体为主要储层。东非裂谷海域分支的断层活动沟通了下伏烃源岩,晚期断层不发育的西部陆坡成为主要的油气聚集区。  相似文献   

18.
The Longmen Shan region includes, from west to east, the northeastern part of the Tibetan Plateau, the Sichuan Basin, and the eastern part of the eastern Sichuan fold-and-thrust belt. In the northeast, it merges with the Micang Shan, a part of the Qinling Mountains. The Longmen Shan region can be divided into two major tectonic elements: (1) an autochthon/parautochthon, which underlies the easternmost part of the Tibetan Plateau, the Sichuan Basin, and the eastern Sichuan fold-and-thrust belt; and (2) a complex allochthon, which underlies the eastern part of the Tibetan Plateau. The allochthon was emplaced toward the southeast during Late Triassic time, and it and the western part of the autochthon/parautochthon were modified by Cenozoic deformation.

The autochthon/parautochthon was formed from the western part of the Yangtze platform and consists of a Proterozoic basement covered by a thin, incomplete succession of Late Proterozoic to Middle Triassic shallow-marine and nonmarine sedimentary rocks interrupted by Permian extension and basic magmatism in the southwest. The platform is bounded by continental margins that formed in Silurian time to the west and in Late Proterozoic time to the north. Within the southwestern part of the platform is the narrow N-trending Kungdian high, a paleogeographic unit that was positive during part of Paleozoic time and whose crest is characterized by nonmarine Upper Triassic rocks unconformably overlying Proterozoic basement.

In the western part of the Longmen Shan region, the allochthon is composed mainly of a very thick succession of strongly folded Middle and Upper Triassic Songpan Ganzi flysch. Along the eastern side and at the base of the allochthon, pre-Upper Triassic rocks crop out, forming the only exposures of the western margin of the Yangtze platform. Here, Upper Proterozoic to Ordovician, mainly shallow-marine rocks unconformably overlie Yangtze-type Proterozic basement rocks, but in Silurian time a thick section of fine-grained clastic and carbonate rocks were deposited, marking the initial subsidence of the western Yangtze platform and formation of a continental margin. Similar deep-water rocks were deposited throughout Devonian to Middle Triassic time, when Songpan Ganzi flysch deposition began. Permian conglomerate and basic volcanic rocks in the southeastern part of the allochthon indicate a second period of extension along the continental margin. Evidence suggests that the deep-water region along and west of the Yangtze continental margin was underlain mostly by thin continental crust, but its westernmost part may have contained areas underlain by oceanic crust. In the northern part of the Longmen Shan allochthon, thick Devonian to Upper Triassic shallow-water deposits of the Xue Shan platform are flanked by deep-marine rocks and the platform is interpreted to be a fragment of the Qinling continental margin transported westward during early Mesozoic transpressive tectonism.

In the Longmen Shan region, the allochthon, carrying the western part of the Yangtze continental margin and Songpan Ganzi flysch, was emplaced to the southeast above rocks of the Yangtze platform autochthon. The eastern margin of the allochthon in the northern Longmen Shan is unconformably overlapped by both Lower and Middle Jurassic strata that are continuous with rocks of the autochthon. Folded rocks of the allochthon are unconformably overlapped by Lower and Middle Jurassic rocks in rare outcrops in the northern part of the region. They also are extensively intruded by a poorly dated, generally undeformed belt, of plutons whose ages (mostly K/Ar ages) range from Late Triassic to early Cenozoic, but most of the reliable ages are early Mesozoic. All evidence indicates that the major deformation within the allochthon is Late Triassic/Early Jurassic in age (Indosinian). The eastern front of the allochthon trends southwest across the present mountain front, so it lies along the mountain front in the northeast, but is located well to the west of the present mountain front on the south.

The Late Triassic deformation is characterized by upright to overturned folded and refolded Triassic flysch, with generally NW-trending axial traces in the western part of the region. Folds and thrust faults curve to the north when traced to the east, so that along the eastern front of the allochthon structures trend northeast, involve pre-Triassic rocks, and parallel the eastern boundary of the allochthon. The curvature of structural trends is interpreted as forming part of a left-lateral transpressive boundary developed during emplacement of the allochthon. Regionally, the Longmen Shan lies along a NE-trending transpressive margin of the Yangtze platform within a broad zone of generally N-S shortening. North of the Longmen Shan region, northward subduction led to collision of the South and North China continental fragments along the Qinling Mountains, but northwest of the Longmen Shan region, subduction led to shortening within the Songpan Ganzi flysch basin, forming a detached fold-and-thrust belt. South of the Longmen Shan region, the flysch basin is bounded by the Shaluli Shan/Chola Shan arc—an originally Sfacing arc that reversed polarity in Late Triassic time, leading to shortening along the southern margin of the Songpan Ganzi flysch belt. Shortening within the flysch belt was oblique to the Yangtze continental margin such that the allochthon in the Longmen Shan region was emplaced within a left-lateral transpressive environment. Possible clockwise rotation of the Yangtze platform (part of the South China continental fragment) also may have contributed to left-lateral transpression with SE-directed shortening. During left-lateral transpression, the Xue Shan platform was displaced southwestward from the Qinling orogen and incorporated into the Longmen Shan allochthon. Westward movement of the platform caused complex refolding in the northern part of the Longmen Shan region.

Emplacement of the allochthon flexurally loaded the western part of the Yangtze platform autochthon, forming a Late Triassic foredeep. Foredeep deposition, often involving thick conglomerate units derived from the west, continued from Middle Jurassic into Cretaceous time, although evidence for deformation of this age in the allochthon is generally lacking.

Folding in the eastern Sichuan fold-and-thrust belt along the eastern side of the Sichuan Basin can be dated as Late Jurassic or Early Cretaceous in age, but only in areas 100 km east of the westernmost folds. Folding and thrusting was related to convergent activity far to the east along the eastern margin of South China. The westernmost folds trend southwest and merge to the south with folds and locally form refolded folds that involve Upper Cretaceous and lower Cenozoic rocks. The boundary between Cenozoic and late Mesozoic folding on the eastern and southern margins of the Sichuan Basin remains poorly determined.

The present mountainous eastern margin of the Tibetan Plateau in the Longmen Shan region is a consequence of Cenozoic deformation. It rises within 100 km from 500–600 m in the Sichuan Basin to peaks in the west reaching 5500 m and 7500 m in the north and south, respectively. West of these high peaks is the eastern part of the Tibetan Plateau, an area of low relief at an elevations of about 4000 m.

Cenozoic deformation can be demonstrated in the autochthon of the southern Longmen Shan, where the stratigraphic sequence is without an angular unconformity from Paleozoic to Eocene or Oligocene time. During Cenozoic deformation, the western part of the Yangtze platform (part of the autochthon for Late Triassic deformation) was deformed into a N- to NE-trending foldandthrust belt. In its eastern part the fold-thrust belt is detached near the base of the platform succession and affects rocks within and along the western and southern margin of the Sichuan Basin, but to the west and south the detachment is within Proterozoic basement rocks. The westernmost structures of the fold-thrust belt form a belt of exposed basement massifs. During the middle and later part of the Cenozoic deformation, strike-slip faulting became important; the fold-thrust belt became partly right-lateral transpressive in the central and northeastern Longmen Shan. The southern part of the fold-thrust belt has a more complex evolution. Early Nto NE-trending folds and thrust faults are deformed by NW-trending basementinvolved folds and thrust faults that intersect with the NE-trending right-lateral strike-slip faults. Youngest structures in this southern area are dominated by left-lateral transpression related to movement on the Xianshuihe fault system.

The extent of Cenozoic deformation within the area underlain by the early Mesozoic allochthon remains unknown, because of the absence of rocks of the appropriate age to date Cenozoic deformation. Klippen of the allochthon were emplaced above the Cenozoic fold-andthrust belt in the central part of the eastern Longmen Shan, indicating that the allochthon was at least partly reactivated during Cenozoic time. Only in the Min Shan in the northern part of the allochthon is Cenozoic deformation demonstrated along two active zones of E-W shortening and associated left-slip. These structures trend obliquely across early Mesozoic structures and are probably related to shortening transferred from a major zone of active left-slip faulting that trends through the western Qinling Mountains. Active deformation is along the left-slip transpressive NW-trending Xianshuihe fault zone in the south, right-slip transpression along several major NE-trending faults in the central and northeastern Longmen Shan, and E-W shortening with minor left-slip movement along the Min Jiang and Huya fault zones in the north.

Our estimates of Cenozoic shortening along the eastern margin of the Tibetan Plateau appear to be inadequate to account for the thick crust and high elevation of the plateau. We suggest here that the thick crust and high elevation is caused by lateral flow of the middle and lower crust eastward from the central part of the plateau and only minor crustal shortening in the upper crust. Upper crustal structure is largely controlled in the Longmen Shan region by older crustal anisotropics; thus shortening and eastward movement of upper crustal material is characterized by irregular deformation localized along older structural boundaries.  相似文献   

19.
扬子北缘黄陵地区晚中生代盆地演化及其构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
渠洪杰  康艳丽  崔建军 《地质科学》2014,49(4):1070-1092
扬子北缘黄陵地区古构造应力场于晚中生代经历发生了重大转变,是扬子板块与华北板块在三叠纪碰撞造山之后陆内构造变形的体现。由黄陵背斜周缘晚中生代盆地充填记录所反映出这一变革的起始时间为中侏罗世晚期。早侏罗世-中侏罗世早期,盆地内沉积了以桐竹园组为代表的河流-湖泊相岩层,由沉积碎屑成分和古水流统计所得出的物源区为北部的秦岭地区,黄陵背斜上部可能也接受了碎屑沉积;中侏罗世晚期-晚侏罗世,沉积中心发生了改变,表现为仅仅在黄陵背斜西侧的秭归盆地内有所保存,沉积环境以曲流河到辫状河流和三角洲为主,物源区则局限于黄陵背斜;早白垩世初期,周坪盆地和宜昌盆地为沉积中心,近缘冲积扇和辫状河流体系占据主体,物源区依然为黄陵地区,两盆地在黄陵背斜南缘可能相连,黄陵背斜上部的原下侏罗统被剥蚀;早白垩世晚期-晚白垩世,远安盆地逐渐发育,盆地西缘为冲积扇-辫状河流体系,中、 东部则以曲流河-湖泊沉积环境为主体,并间有干旱沙漠环境。原型盆地再造结果显示,早侏罗世-中侏罗世早期盆地展布具有近东西向特点,古地貌总体呈现出北部为山脉、 南部为盆地的格局;中侏罗世晚期以来,盆地呈近南北向,黄陵背斜逐渐形成山脉,盆地位于其东西两侧。两期盆地沉积特征反映了扬子北缘古构造应力场由近南北向转变为近东西向的过程。  相似文献   

20.
New data on the stratigraphy, structure, isotopic age, geochemistry, and geodynamic characteristics of the lithotectonic complexes of the Baikal-Vitim Fold System are reported. In particular, it is shown that Middle and Upper Paleozoic rocks are widespread along with Precambrian and Lower Paleozoic sequences. The Baikal-Vitim Fold System is characterized by cyclic evolution and comprises four structural stages: Baikalian (Riphean-Vendian), Caledonian (Cambrian-Early Silurian), Variscan (Late Silurian-Early Carboniferous), and Hercynian (Middle Carboniferous-Permian). A specific set of lithotectonic complexes formed in certain geodynamic settings corresponds to each stage. According to the proposed model, the Variscan and Hercynian complexes developed under conditions of progressively changing geodynamic settings of passive (Late Silurian-Middle Devonian), Andean-type active (Middle Devonian-Early Carboniferous), and Californian-type (Middle Carboniferous-Permian) continental margins. The Middle and Late Paleozoic evolution of the Baikal-Vitim Fold System is correlated with that of the Mongolia-Okhotsk Belt (Aga paleooceanic basin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号