首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
西准噶尔谢米斯台地区是研究准噶尔洋盆构造演化的关键地区,新发现的双峰式火山岩为开展研究提供了直接的载体,对其物质组成特征、岩石地球化学特征和锆石U Pb年代学等进行研究,判别成因机制和大地构造环境,对恢复造山带大地构造格局有着重要的意义。本次研究获得如下认识:该套双峰式火山岩为碱性玄武岩-钙碱性流纹岩组合,流纹岩LA ICP MS锆石U Pb年龄(4318±23) Ma;玄武岩来源于俯冲流体交代的地幔部分熔融,流纹岩来源于地壳物质的部分熔融;双峰式火山岩形成于早志留世弧后盆地初始演化阶段;结合前人的研究成果,认为西准噶尔谢米斯台地区在早古生代存在完整的沟-弧-盆体系。  相似文献   

2.
Review Section     
ABSTRACT

The petrology, geochronology, and geochemistry of the early Permian volcanic rocks from Houtoumiao area, south Xiwuqi County in central Inner Mongolia of China, are studied to elucidate the early Permian tectonic setting of the region. The volcanic rocks, which are interbedded with sandstone, feature both mafic and felsic compositions and show a bimodal nature. Zircon U–Pb dating reveals that the volcanic rocks formed at 274–278 Ma, similar to the ages of bimodal magmatism in neighbouring areas. The mafic rocks are composed of tholeiitic basalt, basaltic andesite, basaltic trachyandesite, and trachyandesite. They are rich in Th, U, and LILEs, depleted in HFSEs Nb, Ta, and Ti, and have positive εNd(t) values (+3.6 to +7.9). Geochemical analyses indicate that the mafic rocks originated from metasomatized lithospheric mantle. The felsic volcanic rocks are mainly rhyolite, with minor trachyte and dacite. They have different evolutionary tendencies of major elements, chondrite-normalized REE patterns, and isotopic compositions from the mafic volcanic rocks, which preclude formation by fractional crystallization of mafic melts. The εNd(t) values of the felsic rocks are similar to those of the Carboniferous Baolidao arc rocks in the region. It is suggested that Permian felsic melts originated from the partial melting of Carboniferous juvenile arc-related rocks. By comparison with typical Cenozoic bimodal volcanism associated with several tectonic settings, including rift, post-collisional setting, back-arc basin, and the Basin and Range, USA, the bimodal volcanic rocks in central Inner Mongolia display similar petrological and geochemical characteristics to the rocks from back-arc basin and the Basin and Range, USA. Based on the analysis of regional geological data, it is inferred that the early Permian bimodal volcanic rocks in the study area formed on an extensional continental margin of the Siberian palaeoplate after late Carboniferous subduction–accretion.  相似文献   

3.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

4.
赵军  张作衡  张贺  刘敏  洪为  蒋宗胜 《地质学报》2013,87(4):525-541
新疆阿吾拉勒山西段是伊犁石炭-二叠纪裂谷的重要组成部分,本文对该区下二叠统典型的双峰式玄武岩-流纹岩组合进行了系统的岩相学和岩石地球化学研究。岩石整体高Na2O、高Al2O3、低TiO2、富碱。玄武岩富集大离子亲石元素Ba、K、LREE和P,亏损高场强元素Th、U、Ta、Nb。粗面斑岩和流纹斑岩富集大离子亲石元素Rb、K、LREE、高场强元素Th、Zr、Hf,亏损Ta、Nb、Sr、Ti和P。玄武安山玢岩的蛛网图与粗面斑岩和流纹斑岩较为一致,但少量元素的特征与玄武岩相似。玄武岩浆来源于弱亏损地幔,并受到了下地壳物质的混染,而玄武安山玢岩、粗面斑岩和流纹斑岩则可能来源于地壳物质的部分熔融。双峰式火山岩的形成可能与上地幔玄武岩浆的底侵作用有关。裂谷演化导致的陆相火山活动持续到早二叠世晚期达到顶峰,中二叠世以后,构造环境由拉伸转为挤压,裂谷演化趋于终止。该区石炭纪末-早二叠世的裂谷活动与整个天山地区晚古生代的构造演化背景具有一致性。  相似文献   

5.
新疆北部地区上古生界火山岩分布及其构造环境   总被引:8,自引:2,他引:6  
新疆北部地区石炭系火山岩主要发育于石炭纪-早二叠世由洋盆向陆内盆地转换阶段,发育碰撞与碰撞后伸展期两类构造环境火山岩; 围绕造山带构成西准噶尔、东准噶尔、准南三大岩区; 石炭系主要发育玄武岩-安山岩-英安岩-流纹岩组合,二叠系主要发育玄武岩-安山岩-流纹岩组合。下石炭统多表现为碰撞期活动陆缘构造环境海相中基性火山岩,上石炭统表现为被动陆缘海陆过渡相钙碱性系列中酸性火山岩; 下二叠统表现为陆相偏碱性中基性、中酸性火山岩。西准噶尔石炭系火山岩为一套海陆交互相中基性火山岩组合,具汇聚岛弧过渡壳特点。东准噶尔石炭系火山岩为一套基性、中酸性岩石组合,具早期岛弧挤压、晚期板内伸展环境特征; 准南博格达山前表现为典型裂谷环境火山岩。二叠系火山岩均为碰撞期后板内伸展构造环境,主要分布于西准噶尔岩区; 表现为东准卡拉麦里残留洋最先闭合隆升,西准达尔布特残留洋随后闭合,最后是北天山洋关闭构造演化次序。新疆北部地区上古生界石炭系-下二叠统火山岩油气成藏多遵循“源控论”,主要围绕石炭系与下二叠统烃源岩发育区、有效生烃中心于构造高部位成藏,晚石炭世伸展裂陷应为有利勘探领域。  相似文献   

6.
海南岛抱板群变质基性火山岩的岩石学、地球化学、Sr、Nd、Pb同位素及其形成的大地构造环境的综合研究表明 ,抱板群变质基性火山岩具有洋中脊型拉斑玄武岩和岛弧型拉斑玄武岩的双重特征 ,起源于亏损地幔 ,是古俯冲消减带上部岩石圈地幔楔、自消减带卷入地幔楔地壳物质及俯冲洋壳析出的流体构成的三元混合物部分熔融结果 ,产生于扩张弧后 (或弧间 )盆地环境。地球动力学分析表明 ,古中元古代时 ,海南岛西部可能经历了一次由“开”向“合”转变的构造演化史。  相似文献   

7.
The Carboniferous volcanic rocks in western Hainan Island consist of a series of oceanic tholeite and rhyoporphyrite,showing bimodal nature.Similar geochemical characters,in terms of abun-daces and relative rations of incompatible elements and REE and the REE patterns,between the basalt and continental rift-associated tholeiite indicate the occurrence of Late Paleozoic rifting in the area.The basaltic magma,with a low degree of evolution,was originated from deep mantle,show-ing contamination by low crustal material.The rhyolite is thought to be formed from partial melting of the continental crust by higher thermal flow in a rift environment rather than from fractional crystallization of a basaltic magma.  相似文献   

8.
杨帆  姜艳艳  陈井胜  韩兴 《岩石学报》2022,(8):2467-2488
本文对华北克拉通北缘中段赤峰撰山子矿区二长闪长岩、花岗(斑)岩等进行了岩相学、地球化学、锆石U-Pb定年以及Hf同位素研究,以期对古亚洲洋演化形成制约。锆石U-Pb定年显示,二长闪长岩和花岗岩形成于早石炭世(341.0±2.2Ma、324.1±4.3Ma),花岗斑岩形成于晚二叠世(252.8±3.2Ma、252.0±1.5Ma)。岩石地球化学及Hf同位素表明,二长闪长岩为高钾钙碱性I型花岗岩,形成于火山弧环境,其源区可能是俯冲板片脱水交代的地幔楔部分熔融产生玄武质岩浆上涌,导致新生地壳物质的部分熔融,并有部分玄武质岩浆加入形成的产物;花岗岩及花岗斑岩均为高钾钙碱性A型花岗岩,花岗岩形成于火山弧环境,花岗斑岩形成于造山后伸展环境,二者皆为新生地壳部分熔融的产物。综合前人研究认为,早石炭世-晚二叠世,研究区经历了古亚洲洋俯冲、弧-陆碰撞以及造山后伸展等阶段。  相似文献   

9.
新疆博格达山主体由石炭系海相火山一沉积岩系组成,以发育两期双峰式火山岩,但不发育花岗岩为特征,对其晚古生代地层时代的划分和演化争议较大。本文重点对博格达山北部两个晚古生代砂岩进行了碎屑锆石U-Pb年代学分析,重新标定博格达山地区晚古生代地层的形成时代;利用物源区的演化,约束晚古生代构造演化。测年结果显示博格达上亚群砂岩的碎屑锆石表面年龄值分布范围较宽,主峰年龄为343~284 Ma(80%),次峰年龄为386~375 Ma(3%)、503~441Ma(7%)和871~735 Ma(10%);芦草沟组砂岩的碎屑锆石表面年龄值非常集中,主峰年龄为358~279 Ma(97%),次峰年龄为257~251 Ma(约3%)。博格达山中部原石炭纪博格达群上亚群与西部和南部下芨芨槽群相当,应属于早二叠世,中部一东部的石炭一二叠纪界线应在博格达下亚群一上亚群或居里得能组一沙雷塞尔克组之间的不整合面之中。博格达北部地区晚二叠世以南侧天山物源区供给为主,反映出晚古生代期间博格达山地区至少存在晚石炭世末和中二叠世两期构造隆升。结合区域火山岩与火山碎屑岩的研究,认为博格达山地区晚古生代主要经历4个演化阶段:早石炭世弧后盆地裂解阶段、晚石炭世碰撞拼贴阶段、早二叠世碰撞后伸展阶段、中-晚二叠世再次隆升到稳定阶段。  相似文献   

10.
The Late Paleozoic volcanic and sedimentary rocks are widespread in the North Tianshan along the north margin of the Yili block. They consist of basalt, basaltic andesite, andesite, trachyandesite, dacite, rhyolite, tuff, and tuffaceous sandstone. According to zircon sensitive high-resolution ion microprobe (SHRIMP) dating, the age of the Late Paleozoic volcanic rocks in Tulasu basin in western part of North Tianshan is constrained to be Early Devonian to Early Carboniferous (417–356 Ma), rather than Early Carboniferous as accepted previously. Geochemical characteristics of the Early Devonian to Early Carboniferous volcanic rocks are similar to those of arc volcanic rocks, which suggest that these volcanic rocks could be the major constituents of a continental arc formed by the southward subduction of North Tianshan Oceanic lithosphere. Geochemical studies indicate that the magma source of the volcanic rocks might be the mantle wedge mixed with subduction fluid, which is geochemically enriched than primitive mantle but depleted than E-MORB. The calculation shows that the basalt could be formed by ∼10% partial melting of subduction fluid modified mantle wedge. Andesites with high initial 87Sr/86Sr (0.7094–0.7104) and negative εNd(t) (−4.45 to −4.79) values reveal the contribution of continental crust to its source. The calculation of assimilation–fractional crystallization (AFC) shows that the fractional crystallization process of the basaltic magma, which was accompanied with assimilation by different degree of continental crust, produced andesite (7–9%), dacite (∼12%) and rhyolite (>20%).  相似文献   

11.
ABSTRACT

A Paleogene accretionary complex, the Mineoka–Setogawa belt is distributed adjacent to the northern portion of the collision zone between Honshu and Izu–Bonin–Mariana (IBM) arcs in central Japan, comprising a mélange of ophiolitic fragments of various sizes. The Eocene-Oligocene plutonic rocks in this belt (gabbro, diorite, and tonalite) have been interpreted as fragments brought from the deep crust beneath the IBM arc through tectonic collisions. The geochemical characteristics of the gabbro and associated basaltic dike are similar to those of the Eocene IBM tholeiitic basalt; thus, the gabbro was likely formed via the crystallization of the Eocene tholeiitic basaltic magmas, which was produced by the partial meltings of a depleted mantle wedge. A comparison with experimental results and geochemical modeling indicates that the tonalite was generated by 10–30% dehydration melting of the gabbro. Actually, Eocene–Oligocene felsic veins, which are coeval with the plutonic rocks, occur in the Mineoka–Setogawa gabbro. Plagioclase crystals in the diorite comprise Ca-rich and -poor parts in a single crystal. Their compositional characteristics are consistent with those of plagioclase in the gabbro and tonalite, respectively. The textures and chemical composition of plagioclase indicate that the diorite was formed by the mixing between mafic and silicic magmas. The whole-rock composition of the diorite also indicates the evidence for the mixing between basaltic magmas which were fractionated to variable degrees and homogeneous silicic magma. The mixing model proposed from the first direct observations of the IBM middle crust exposed on the Mineoka–Setogawa belt is applied to the genesis of the Eocene to present intermediate rocks in the IBM arc. If the continental crust were created at intra-oceanic arc settings such as the IBM arc, the magma mixing model would be one of the most likely mechanisms for the genesis of the continental crust.  相似文献   

12.
ABSTRACT

Recently identified Early Jurassic, Early Cretaceous, and Late Cretaceous granites of the Tengchong terrane, SW China, help to refine our understanding of the Mesozoic tectonic-magmatic evolutionary history of the region. We present new zircon U–Pb geochronological, Lu–Hf isotopic and geochemical data on these rocks. The zircon LA-ICP-MS U–Pb ages of the Mangzhangxiang, Laochangpo, and Guyong granites, and Guyong granodioritic microgranular enclaves are 185.6, 120.7, 72.9, and 72.7 Ma, respectively. Geochemical and Hf isotopic characteristics suggest the Mangzhangxiang and Laochangpo S-type granites were derived from partial melting of felsic crust and that the Guyong I-type granite and associated MMEs were generated through magma mixing/mingling. Mesozoic magmatism in the Tengchong terrane can be divided into three episodes: (1) the Triassic syn- and post-collisional magmatic event was related to the closure of the Palaeo-Tethyan Ocean, as represented by the Changning-Menglian suture zone; (2) the Jurassic to Early Cretaceous magmatism was related to the subduction of the Meso-Tethyan oceanic crust, as represented by the Myitkyina ophiolite belt; and (3) the Late Cretaceous magmatism was related to the subduction of the Neo-Tethyan oceanic crust, as represented by the Kalaymyo ophiolite belt.  相似文献   

13.
新疆北部后碰撞构造演化与成矿   总被引:149,自引:8,他引:149  
王京彬  徐新 《地质学报》2006,80(1):23-31
以夹于陆块间的蛇绿岩套构造就位及其伴随的区域变形变质、同碰撞花岗岩侵入时期,作为主碰撞期。后碰撞发生在主碰撞之后,并随大规模花岗质岩浆作用的结束而结束。依此标志,新疆北部后碰撞阶段的主体时限为早石炭世维宪期—晚二叠世。研究表明,新疆北部后碰撞阶段具有明显的继承性、旋回性、阶段性和方向性,经历了早石炭世伸展—晚石炭世挤压(隆升)和早二叠世伸展—晚二叠世挤压(隆升)两个伸展—挤压旋回。其中,早石炭世伸展可能与主碰撞导致的岩石圈板片拆沉有关,早二叠世伸展则可能与刚性增强的新陆壳下幔源岩浆的底侵作用有关。由多陆块碰撞过程中产生的巨大挤压应力,被后碰撞期不同机制幔源岩浆作用导致的阶段性伸展所消耗,由此逐步完成了碰撞后新陆壳的固结。新疆北部后碰撞的伸展阶段和挤压—伸展转变期,是大规模成矿的高峰期,并具有独特的成矿时空分布规律性。  相似文献   

14.
东准噶尔卡拉麦里蛇绿岩带南侧分布有大量的石炭纪侵入体,主要出露于五彩城、滴水泉一带及野马站地区。通过对卡拉麦里断裂以南侵入体岩石类型、锆石年代学、地球化学的综合分析,划分出早石炭世后碰撞I型花岗岩类及晚石炭世陆内双峰式侵入岩(碱长花岗岩+角闪辉长岩)。结合断裂以北黄羊山、老鸦泉岩体新近发表的数据及区域内火山岩的研究成果,对卡拉麦里地区石炭纪—二叠纪构造-岩浆演化过程给出了新认识,即卡拉麦里地区从后碰撞到陆内伸展的构造转换时间为早石炭世末期—晚石炭世早期,后碰撞阶段岩浆岩以钙碱性I型花岗岩、玄武安山岩、安山岩为特点,陆内伸展阶段以典型的双峰式岩浆岩(辉长岩+花岗岩、玄武岩+流纹岩)及A型花岗岩为特点,卡拉麦里地区具有正εNd值的花岗岩类来源于亏损地幔形成的年轻地壳的部分熔融。  相似文献   

15.
《Gondwana Research》2000,3(1):65-77
The late Proterozoic Malani bimodal volcanics constitute the largest suite of anorogenic acid volcanics in India. The volcanism took place during 745±10 Ma ago, succeeding the granitic activity of Abu pluton and ceased before the onset of Marwar sedimentation.On the basis of field evidences, three stages of igneous activity have been recognised. Volcanics of the first stage are mostly basalt with occasional andesite or trachybasalts. These are subsequently covered by the voluminous outpouring of peralkaline and peraluminous rhyolite, basalt, dacite and trachyte flows. The third stage ceased with the outburst of ash flow deposits.The dominant felsic volcanics are rhyolites and rhyodacites spread over an area of about 31, 000 km2. The other rock types associated with rhyolite are trachytes, dacites, pitchstone, welded tuff, vitric, lithic and crystal ash, ignimbrite, obsidian, pyroclastic slates, agglomerate, volcanic breccia and volcanic conglomerates. Majority of the acid volcanics are high potassic and a few are calcalkaline or low potassic in composition.Feldspar geothermometry suggests the temperature of equilibrium to be above 650°C. Similar results were obtained by magnetite-ulvospinel geothermometry. Oxygen fugacity is estimated to be about 10−18 under FMQ-Ni-NiO buffer conditions.Malani volcanism was essentially under terrestrial conditions, although deposition by aqueous conditions are also indicated. The volcanic eruptions have been through fissures, shield volcanoes and central cones. The volcanism was triggered in an extensional tectonic regime of continental crust, where geotherm was raised by the repeated influx of basic magma. The initial basaltic magma was possibly generated at deeper depth by ‘hot spot’ activity. This magma while migrating upwards supplied additional heat for the partial melting of lower sialic crust resulting in the generation of felsic magma. The crustal extension has helped in the upward advancement of the felsic magma.  相似文献   

16.
An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al2O3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.  相似文献   

17.
Late Carboniferous (300–290 Ma) calc-alkaline basalts, andesites, and rhyolites typical of volcanic arc settings occur in the intermontane Saar-Nahe basin (SW Germany) within the Variscan orogenic belt. The volcanic rock suite was emplaced under a regime of tensional tectonics during orogenic collapse and its origin has been explained by melting of mantle and crust in the course of limited lithospheric rifting. We report major, trace and rare-earth-element data (REE), and Nd-Pb-Sr-O isotope ratios for a representative sample suite, which are fully consistent with an origin closely related to plate subduction. Major and trace element data define continuous melt differentiation trends from a precursor basaltic magma involving fractional crystallization of olivine, pyroxene, plagioclase, and magnetite typical of magma evolution in a volcanic arc. This finding precludes an origin of the andesitic compositions by mixing of mafic and felsic melts as can be expected in anorogenic settings. The mafic samples have high Mg numbers (Mg# = 65–73), and high Cr (up to 330 ppm) and Ni (up to 200 ppm) contents indicating derivation from a primitive parental melt that was formed in equilibrium with mantle peridotite. We interpret the geochemical characteristics of the near-primary basalts as reflecting their mantle source. The volcanic rocks are characterized by enrichment in the large ion lithophile elements (LILE), negative Nb and Ti, and positive Pb anomalies relative to the neighboring REE, suggesting melting of a subduction-modified mantle. Initial Nd values of −0.7 to −4.6, Pb, and 87Sr/86Sr(t) isotope ratios for mafic and felsic volcanics are similar and indicate partial melting of an isotopically heterogeneous and enriched mantle reservoir. The enrichment in incompatible trace elements and radiogenic isotopes of a precursor depleted mantle may be attributed to addition of an old sedimentary component. The geochemical characteristics of the Saar-Nahe volcanic rocks are distinct from typical post-collisional rock suites and they may be interpreted as geochemical evidence for ongoing plate subduction at the margin of the Variscan orogenic belt not obvious from the regional geologic context. Received: 3 August 1998 / Accepted: 2 January 1999  相似文献   

18.
本文在野外地质调查基础上,通过对西准噶尔花岗岩类年代学的研究,厘定各期构造岩浆事件的时限,反演西准噶尔造山带构造演化过程。研究结果表明,西准噶尔岩浆活动划分为3个时期。晚志留世—早泥盆世花岗岩类主要为谢米斯台花岗岩类、赛尔花岗岩类及阿克乔克花岗岩类,结合区域地质背景及阿克乔克花岗闪长岩具有典型的埃达克岩地球化学特征,推测阿克乔克埃达克岩可能是大洋板片俯冲过程中经过脱水发生部分熔融形成的;早石炭世花岗岩类主要分布在扎尔马—萨吾尔岩浆弧地区,这一时期的花岗岩类可能是额尔齐斯蛇绿岩所代表的古大洋向南俯冲脱水引发上覆地幔楔部分熔融或者部分熔融形成的玄武岩浆底侵作用引起中、下地壳物质部分熔融的结果,指示俯冲的古大洋在早石炭世期间未闭合碰撞;晚石炭世—早二叠世的花岗岩类在整个西准噶尔地区都有分布,形成于后碰撞构造环境,表明西准地区进入了陆内构造演化阶段。  相似文献   

19.
The East Kunlun Orogenic Belt(EKOB),which is in the northern part of the Greater Tibetan Plateau,contains voluminous Late Triassic intermediate-felsic volcanic rocks.In the east end of the EKOB,we identified highly differentiated peralkaline-like Xiangride rhyolites(~209 Ma)that differ from the wide-spread andesitic-rhyolitic Elashan volcanics(~232-225 Ma)in terms of their field occurrences and min-eral assemblages.The older,more common calc-alkaline felsic Elashan volcanics may have originated from partial melting of the underthrust Paleo-Tethys oceanic crust under amphibolite facies conditions associated with continental collision.The felsic Elashan volcanics and syn-collisional granitoids of the EKOB are different products of the same magmatic event related to continental collision.The Xiangride rhyolites are characterized by elevated abundances of high field strength elements,especially the very high Nb and Ta contents,the very low Ba,Sr,Eu,P,and Ti contents;and the variably high 87Sr/86Sr ratios(up to 0.96),exhibiting remarkable similarities to the characteristic peralkaline rhyolites.The primitive magmas parental to the Xiangride rhyolites were most likely alkali basaltic magmas that underwent pro-tracted fractional crystallization with continental crust contamination.The rock associations from the early granitoids and calc-alkaline volcanic rocks to the late alkaline basaltic dikes and peralkaline-like rhyolites in the Triassic provide important information about the tectonic evolution of the EKOB from syn-collisional to post-collisional.We infer that the transition from collisional compression to post-collisional extension occurred at about 220 Ma.  相似文献   

20.
新疆东准噶尔卡拉麦里造山带晚石炭世双峰式火山岩很好地记录了中亚造山带晚古生代时期洋陆转换阶段复杂的岩浆作用过程,对该过程的详细剖析能更好地理解中亚造山带的地质历史.通过该区域晚石炭世巴塔玛依内山组火山岩详细的岩石学、地球化学、锆石U-Pb年代学和Sr-Nd-Pb同位素组成的研究,并结合区域上已有的研究成果,获得了如下认识:(1) 该套火山岩组合形成于晚石炭世早期320.2±4.2 Ma,为晚石炭世早期陆相喷发的产物.火山岩具明显的双峰式组合的特征,基性端元由碱性系列和拉斑系列的玄武岩、玄武质粗面安山岩组成;酸性端元由粗面岩和流纹岩组成,成分上相当于A型花岗岩;(2) 岩石地球化学和同位素特征显示,该套双峰式火山岩来源于不同的岩浆源区,基性岩来自于亏损的地幔源区,在岩浆上升过程中发生橄榄石及单斜辉石的分离结晶作用并遭受了地壳混染,而酸性岩来自于下地壳的部分熔融;(3) 该套双峰式火山岩产出于后碰撞末期的构造环境,由于洋壳的拆沉作用而引发软流圈上涌,使得上覆的地幔发生部分熔融产生岩浆,同时由于底侵作用导致地壳下部发生部分熔融,喷发出地表形成该双峰式火山岩套,这套双峰式火山岩的出现,标志着东准噶尔卡拉麦里地区造山作用进入尾声.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号