首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carry out a comparative analysis of Super-Kamiokande, SNO, and photospheric magnetic-field data for the interval in which these datasets overlap. This proves to be the interval of operation of the D2O phase of the SNO experiment. Concerning solar-rotational modulation, we find that the magnetic-field power spectrum shows the strongest peaks at the second and sixth harmonics of the solar synodic rotation frequency [i.e., at 3ν rot and 7ν rot]. We find that the restricted Super-Kamiokande dataset has a strong modulation at the second harmonic, as we found to be the case for the complete Super-Kamiokande dataset. The SNO D2O dataset exhibits weak modulation at that frequency, but shows strong modulation in the band corresponding to the sixth harmonic (too high a frequency to be detectable in the Super-Kamiokande dataset, which is available only in five-day bins, whereas SNO data is available in one-day bins). We estimate the significance level of the correspondence of the Super-Kamiokande second-harmonic peak with the corresponding magnetic-field peak to be 0.0004, and the significance level of the correspondence of the SNO D2O sixth-harmonic peak with the corresponding magnetic-field peak to be 0.009. By estimating the amplitude of the modulation of the solar-neutrino flux at the second harmonic from the restricted Super-Kamiokande dataset, we find that the weak power at that frequency in the SNO D2O power spectrum is not particularly surprising. We also examine power spectra in the neighborhood of 9.43 year−1, which is the frequency of a particularly strong modulation in the entire Super-Kamiokande dataset. There is no peak at this frequency in the power spectrum formed from the restricted Super-Kamiokande dataset. It is therefore not surprising that we find (in agreement with the recent analysis by the SNO collaboration) that this peak does not show up in the SNO D2O dataset either.  相似文献   

2.
Evidence for an anomalous annual periodicity in certain nuclear-decay data has led to speculation on a possible solar influence on nuclear processes. We have recently analyzed data concerning the decay rates of 36Cl and 32Si, acquired at the Brookhaven National Laboratory (BNL), to search for evidence that might be indicative of a process involving solar rotation. Smoothing of the power spectrum by weighted-running-mean analysis leads to a significant peak at frequency 11.18 year−1, which is lower than the equatorial synodic rotation rates of the convection and radiative zones. This article concerns measurements of the decay rates of 226Ra acquired at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar (but not identical) analysis yields a significant peak in the PTB dataset at frequency 11.21 year−1, and a peak in the BNL dataset at 11.25 year−1. The change in the BNL result is not significant, since the uncertainties in the BNL and PTB analyses are estimated to be 0.13 year−1 and 0.07 year−1, respectively. Combining the two running means by forming the joint power statistic leads to a highly significant peak at frequency 11.23 year−1. We will briefly comment on the possible implications of these results for solar physics and for particle physics.  相似文献   

3.
A search for any particular feature in any single solar neutrino dataset is unlikely to establish variability of the solar neutrino flux since the count rates are very low. It helps to combine datasets, and in this article we examine data from both the Homestake and GALLEX experiments. These show evidence of modulation with a frequency of 11.85 year−1, which could be indicative of rotational modulation originating in the solar core. We find that precisely the same frequency is prominent in power spectrum analyses of the ACRIM irradiance data for both the Homestake and GALLEX time intervals. These results suggest that the solar core is inhomogeneous and rotates with a sidereal frequency of 12.85 year−1. From Monte Carlo calculations, it is found that the probability that the neutrino data would by chance match the irradiance data in this way is only 2 parts in 10 000. This rotation rate is significantly lower than that of the inner radiative zone (13.97 year−1) as recently inferred from analysis of Super-Kamiokande data, suggesting that there may be a second, inner tachocline separating the core from the radiative zone. This opens up the possibility that there may be an inner dynamo that could produce a strong internal magnetic field and a second solar cycle.  相似文献   

4.
The N-S asymmetry of the long-lived solar filaments published in the Meudon catalogues for the time interval 1919–1989 is studied by means of power-spectrum analysis. Statistically significant periods of 35.0 and 11.7 yr are obtained. There are no statistically significant periods shorter than 11 yr.  相似文献   

5.
Time – frequency analysis of data from the GALLEX and GNO solar neutrino experiments shows that some features in power-spectrum analyses of those datasets are due to aliasing (a result of the fact that run durations tend to be small multiples of one week). Displays formed from the published GALLEX data show a sharp discontinuity that we attribute to some systematic effect. We therefore normalize data for each of the four experiments in the GALLEX series and concatenate the resulting normalized data. This step effectively removes the presumed systematic effect. To help understand the effect of aliasing, we form time – frequency displays of the two principal modulations found in the data, at 11.87 year−1 and at 13.63 year−1. We also form time – frequency displays of datasets formed by subtracting these modulations from the actual (normalized) data. The results suggest that the true principal modulation is that at 11.87 year−1. Comparison with helioseismology data suggests that modulation may be occurring in the core, perhaps resulting from inhomogeneities and fluctuations in the nuclear-burning process, and that the sidereal rotation rate of the core is 12.87 year−1, or 408 nHz.  相似文献   

6.
There has for some time been evidence of variability in radiochemical solar neutrino measurements, but this evidence has seemed suspect since the Cerenkov experiments have not shown similar evidence of variability. The present reanalysis of Super-Kamiokande data shows strong evidence of r-mode oscillations. The frequencies of these oscillations correspond to a region with a sidereal rotation rate of 13.97 year−1. This estimate is incompatible with the rotation rate in the convection zone but is compatible with current estimates of the rotation rate in the radiative zone. The excitation of r modes in the radiative zone may be due to a velocity field originating in or related to the nuclear-burning core.  相似文献   

7.
Due to the recent all-sky, high-precision measurement of microwave background anisotropies by WMAP, a value for baryon-to-photon ratio η was obtained. At the WMAP value for η, the 4HE abundance was predicted. In this article we use a simple semi-analytical method with 4He predicted and measured values to place a limit on the variation of the gravitational constant G. We find using a conservative range for the measured values for Y p , that ΔG/G is constrained between −0.26 and 0.15. If we assume a monotonic power law time dependence Gt β then β values is constrained between −0.008 and 0.0038, which translate into . This compares well with results obtained by others using full numerical analysis.   相似文献   

8.
We propose a new method for the extraction of Rotation Measures from spectral polarization data. The method is based on maximum likelihood analysis and takes into account the circular nature of the polarization data. The method is unbiased and statistically more efficient than the standard χ2 procedure.  相似文献   

9.
The properties of solar magnetic fields on scales less than the spatial resolution of solar telescopes are studied. A synthetic infrared spectropolarimetric diagnostic based on a 2D MHD simulation of magnetoconvection is used for this. Analyzed are two time sequences of snapshots that likely represent two regions of the network fields with their immediate surroundings on the solar surface with unsigned magnetic flux densities of 300 and 140 G. In the first region from the probability density functions of the magnetic field strength it is found that the most probable field strength at log τ 5=0 is equal to 250 G. Weak fields (B<500 G) occupy about 70% of the surface, whereas stronger fields (B>1000 G) occupy only 9.7% of the surface. The magnetic flux is −28 G and its imbalance is −0.04. In the second region, these parameters are correspondingly equal to 150 G, 93.3%, 0.3%, −40 G, and −0.10. The distribution of line-of-sight velocities on the surface of log τ 5=−1 is estimated. The mean velocity is equal to 0.4 km s−1 in the first simulated region. The average velocity in the granules is −1.2 km s−1 and in the intergranules it is 2.5 km s−1. In the second region, the corresponding values of the mean velocities are equal to 0, −1.8, and 1.5 km s−1. In addition the asymmetry of synthetic Stokes V profiles of the Fe i 1564.8 nm line is analyzed. The mean values of the amplitude and area asymmetry do not exceed 1%. The spatially smoothed amplitude asymmetry is increased to 10% whereas the area asymmetry is only slightly varied.  相似文献   

10.
In the present investigation we measure the differential rotation of strong magnetic flux during solar cycles 21 – 23 with the method of wavelet transforms. We find that the cycle-averaged synodic rotation rate of strong magnetic flux can be written as ω=13.47−2.58sin 2 θ or ω=13.45−2.06sin 2 θ−1.37sin 4 θ, where θ is the latitude. They agree well with the results derived from sunspots. A north–south asymmetry of the rotation rate is found at high latitudes (28°<θ<40°). The strong flux in the southern hemisphere rotates faster than that in the northern hemisphere by 0.2 deg day−1. The asymmetry continued for cycles 21 – 23 and may be a secular property.  相似文献   

11.
A new orbital period analysis for U Geminorum is made by means of the standard O–C technique based on 187 times of light minima including the three newest CCD data from our observation. Although there are large scatter near 70,000 cycles in its O–C diagram, there is strong evidence (>99.9% confidence level) to show the secular increase of orbital period with a rate  s−1. Using the physical parameters recently derived by Echevarría et al. (Astron. J. 134:262, 2007), the range of mass transfer rate for U Geminorum is estimated as from −3.5(5)×10−9 M  yr−1 to −1.30(6)×10−8 M  yr−1. Moreover, the data before 60,000 cycles shows the obvious quasi-period variations. The least square estimation of a ∼17.4 yr quasi-periodic variation superimposed on secular orbital period increase is derived. Considering the possibility that solar-type magnetic activity cycles in the secondary star of U Geminorum may produce the quasi-period variations of the orbital period, Applegate’s mechanism is discussed and the results indicate such mechanism has difficulty explaining the quasi-period variation for U Geminorum. Hence, we attempted to apply the light-travel time effect to interpret the quasi-period variation and found the perturbation of ∼17.4 yr quasi-period may result from a brown dwarf. If the orbital inclination is assumed as i∼15°, corresponding to the upper limit of mass of a brown dwarf, then its orbital radii is ∼7.7 AU.  相似文献   

12.
The variation of the fine-structure constant α = e 2 / ħc can be probed by comparing the wavelength of atomic transitions from the redshift of quasars in the Universe and laboratory over cosmological time scales t ~ 1010 yr. After a careful selection of pairs of lines, the Thong method with a derived analytical expression for the error analysis was applied to compute the α variation. We report a new constraint on the variation of the fine-structure constant based on the analysis of the CIV, NV, MgII, AlIII, and SiIV doublet absorption lines. The weighted mean value of the variation in α derived from our analysis over the redshift range 0.4939 ≤ z ≤ 3.7 is = ( 0.09 ± 0.07)×10−5. This result is three orders of magnitude better than the results obtained by earlier analysis of the same data on the constraint on Δα/α .  相似文献   

13.
We investigate the relative motion of three stars, ADS 7446, 9346, and 9701, based on long-term observations with the Pulkovo 26-inch refractor. The relative motion of all three stars shows a perturbation that could be produced by the gravitational influence of an invisible companion. For ADS 7446, we have determined the orbit of the photocenter with a period of 7.9 yr; the mass of the companion is more than 0.4M . For ADS 9346, we have determined the radial velocities of the components: −14.60 km s−1 for A and −13.94 km s−1 for B. For ADS 9346 and 9701, we have determined the dynamical parallaxes, 24 and 20 mas, respectively, which are larger than those in the Hipparcos catalog by 5 mas, and calculated the orbits by the apparent motion parameter (AMP) method. The new orbit of ADS 9346 is: a = 5″.2, P = 2035 yr, and e = 0.46 at the system’s mass M = 2.5M . The new orbits of ADS 9701 are: (a = 2″.9, P = 829 yr, e = 0.54, M = 4.3M ) and (a = 3″.8, P = 1157 yr, e = 0.53, M = 5.0M ).  相似文献   

14.
The results of two color photometry of active close binary CN And are presented and analyzed. The light curves of the system are obviously asymmetric, with the primary maximum brighter than the secondary maximum, which is known as the O’Conell effect. The most plausible explanation of the asymmetry is expected to be due to spot activity of the primary component. For the determination of physical and geometrical parameters, the most new version of W-D code was used, but the presence of asymmetry prevented the convergence of the method when the whole light curves were used. The solutions were obtained by applying mode 3 of W-D code to the first half of the light curves, assuming synchronous rotation and zero eccentricity. Absolute parameters of the system were obtained from combining the photometric solution with spectroscopic data obtained from radial velocity curve analysis. The results indicate the poor thermal contact of the components and transit primary minimum. Finally the O-C diagram was analyzed. It was found that the orbital period of the system is changing with a rate ofd P/dt = − 2.2(6) × 10−10 which corresponds to mass transfer from more massive component to less massive with the rate ofd M/dt ∼4.82 × 10−8 M sun/year.  相似文献   

15.
This article presents a comparative analysis of solar activity data, Mt Wilson diameter data, Super-Kamiokande solar neutrino data, and nuclear decay data acquired at the Lomonosov Moscow State University (LMSU). We propose that salient periodicities in all of these datasets may be attributed to r-mode oscillations. Periodicities in the solar activity data and in Super-Kamiokande solar neutrino data may be attributed to r-mode oscillations in the known tachocline, with normalized radius in the range 0.66–0.74, where the sidereal rotation rate is in the range 13.7–14.6 year−1. We propose that periodicities in the Mt Wilson and LMSU data may be attributed to similar r-mode oscillations where the sidereal rotation rate is approximately 12.0 year−1, which we attribute to a hypothetical “inner” tachocline separating a slowly rotating core from the radiative zone. We also discuss the possible role of the Resonant Spin Flavor Precession (RSFP) process, which leads to estimates of the neutrino magnetic moment and of the magnetic field strength in or near the solar core.  相似文献   

16.
The status of the Galactic thick disk is reviewed. Consideration of the recent literature suggests that its vertical scale height and normalisation with respect to the thin disk remain uncertain to within a factor two, with values reported in the ranges 750–1500 pc, and 0.02–0.13, respectively. The bulk of the thick disk has kinematics (σU, σV, σW) = (65, 54, 38 km s-1), and lags the thin disk by some 40 km s-1; differences of opinion exists as to whether kinematics change with distance from the Galactic plane. The bulk of the thick disk has [Fe/H] ∼ −0.6, with little or no evidence for a vertical gradient. The question of gradients is critical for an understanding of thick disk cosmogony and needs closer attention. The reality of the so-called metal-weak thick disk (material having disklike kinematics and [Fe/H] ≤ −1.0) is also considered. The case for such material seems to be steadily growing: in the range −1.6 ≤ [Fe/H] ≤ −1.0, recent estimates suggest ρMWTDHalo ∼ 0.1-0.3. While many workers regard the thick disk as a discrete entity, the caveat is made that this is a sufficient condition, but not one necessarily required by the observations. Best practice requires that both the discrete model and the alternative extended configuration be compared with observational data to examine the relative likelihood of their relevance. Recent theoretical advances are also discussed, together with the need for in situ measurements of the thick disk away from the Galactic plane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Krucker  Säm  Christe  Steven  Lin  R.P.  Hurford  Gordon J.  Schwartz  Richard A. 《Solar physics》2002,210(1-2):445-456
The excellent sensitivity, spectral and spatial resolution, and energy coverage down to 3 keV provided by the Reuven Ramaty High-Energy Solar Spectroscopic Imager mission (RHESSI) allows for the first time the detailed study of the locations and the spectra of solar microflares down to 3 keV. During a one-hour quiet interval (GOES soft X-ray level around B6) on 2 May, 1:40–2:40 UT, at least 7 microflares occurred with the largest peaking at A6 GOES level. The microflares are found to come from 4 different active regions including one behind the west limb. At 7′′ resolution, some events show elongated sources, while others are unresolved point sources. In the impulsive phase of the microflares, the spectra can generally be fitted better with a thermal model plus power law above ∼ 6–7 keV than with a thermal only. The decay phase sometimes can be fitted with a thermal only, but in some events, power-law emission is detected late in the event indicating particle acceleration after the thermal peak of the event. The behind-the-limb microflare shows thermal emissions only, suggesting that the non-thermal power law emission originates lower, in footpoints that are occulted. The power-law fits extend to below 7 keV with exponents between −5 and −8, and imply a total non-thermal electron energy content between 1026–1027 erg. Except for the fact that the power-law indices are steeper than what is generally found in regular flares, the investigated microflares show characteristics similar to large flares. Since the total energy in non-thermal electrons is very sensitive to the value of the power law and the energy cutoff, these observations will give us better estimates of the total energy input into the corona. (Note that color versions of figures are on the accompanying CD-ROM.) Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022404512780  相似文献   

18.
We study magnetic power spectra of active and quiet regions by using Big Bear Solar Observatory and SOHO/MDI measurements of longitudinal magnetic fields. The MDI power spectra were corrected with Gaussian Modulation Transfer Function. We obtained reliable magnetic power spectra in the high wave numbers range, up to k=4.6 Mm−1, which corresponds to a spatial scale l=1.4 Mm. We find that the occurrence of the spectral discontinuity at high wave numbers, k≥3 Mm−1, largely depends on the spatial resolution of the data and it appears at progressively higher wave numbers as the resolution of the data improves. The spectral discontinuity in the raw spectra is located at wave numbers about 3 times smaller than wave numbers, corresponding to the resolution of the data, and about 1.5–2.0 times smaller in the case of the noise- and-resolution corrected spectra. The magnetic power spectra for active and quiet regions are different: active-region power spectra are described as ∼k −1.7, while in a quiet region the spectrum behaves as ∼k −1.3. We suggest that the difference can be due to small-scale dynamo action in the quiet-Sun photosphere. Our estimations show that the dynamo can generate more than 6% of the observed magnetic power.  相似文献   

19.
The redshifted 1420 MHz emission from the HI in unresolved damped Lyman-α clouds at high z will appear as a background radiation in low frequency radio observations. This holds the possibility of a new tool for studying the universe at high-z, using the mean brightness temperature to probe the HI content and its fluctuations to probe power spectrum. Existing estimates of the HI density atz−3 imply a mean brightness temperature of 1 mK at 320 MHz. The cross-correlation between the temperature fluctuation across different frequencies and sight lines is predicted to vary from 10−7 K2 to 10−8 K2 over intervals corresponding to spatial scales from 10 Mpc to 40 Mpc for some of the currently favoured cosmological models. Comparing this with the expected sensitivity of the GMRT, we find that this can be detected with ∼ 10 hrs of integration, provided we can distinguish it from the galactic and extragalactic foregrounds which will swamp this signal. We discuss a strategy based on the very distinct spectral properties of the foregrounds as against the HI emission, possibly allowing the removal of the foregrounds from the observed maps.  相似文献   

20.
A comprehensive discussion of the period variations in this rapidly evolving interacting binary system leads to the following conclusions. The period is monotonously decreasing at an average rate of 2.1 s yr−1, but the actual rate of decrease is not strictly constant. The rate of period variation can be adequately described as piecewise constant for time intervals of 10–30 yr. Transitions between such intervals of constant decrease rate can be accompanied for a short interval of time by very fast period changes: in 1975, the rate of decline approached and possibly surpassed −15 s yr−1. It seems natural to assume that these irregularities of the period variation are due to fluctuations in the mass exchange between the components and also the mass loss from the system, as suggested by UV observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号