首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We identify new strong lensing clusters of galaxies from the Sloan Digital Sky Survey III (SDSS DR8) by visually inspecting color images of a large sample of clusters of galaxies. We find 68 new clusters showing giant arcs in addition to 30 known lensing systems. Among 68 cases, 13 clusters are almost certain lensing systems with tangential giant arcs, 22 clusters are probable and 31 clusters are possible lensing systems. We also find two exotic systems with blue rings. The giant arcs have angular separatio...  相似文献   

2.
We present the results of a set of numerical simulations evaluating the effect of cluster galaxies on arc statistics.
We perform a first set of gravitational lensing simulations using three independent projections for each of nine different galaxy clusters obtained from N -body simulations. The simulated clusters consist of dark matter only. We add a population of galaxies to each cluster, mimicking the observed luminosity function and the spatial galaxy distribution, and repeat the lensing simulations including the effects of cluster galaxies, which themselves act as individual lenses. Each galaxy is represented by a spherical Navarro, Frenk & White density profile.
We consider the statistical distributions of the properties of the gravitational arcs produced by our clusters with and without galaxies. We find that the cluster galaxies do not introduce perturbations strong enough to significantly change the number of arcs and the distributions of lengths, widths, curvature radii and length-to-width ratios of long arcs. We find some changes to the distribution of short-arc properties in the presence of cluster galaxies. The differences appear in the distribution of curvature radii for arc lengths smaller than 12 arcsec, while the distributions of lengths, widths and length-to-width ratios are significantly changed only for arcs shorter than 4 arcsec.  相似文献   

3.
Galaxy harassment has been proposed as a physical process that morphologically transforms low surface density disc galaxies into dwarf elliptical galaxies in clusters. It has been used to link the observed very different morphology of distant cluster galaxies (relatively more blue galaxies with 'disturbed' morphologies) with the relatively large numbers of dwarf elliptical galaxies found in nearby clusters. One prediction of the harassment model is that the remnant galaxies should lie on low surface brightness tidal streams or arcs. We demonstrate in this paper that we have an analysis method that is sensitive to the detection of arcs down to a surface brightness of 29 B μ and we then use this method to search for arcs around 46 Virgo cluster dwarf elliptical galaxies. We find no evidence for tidal streams or arcs and consequently no evidence for galaxy harassment as a viable explanation for the relatively large numbers of dwarf galaxies found in the Virgo cluster.  相似文献   

4.
The galaxy population in rich local galaxy clusters shows a ratio of one quarter elliptical galaxies, two quarters S0 galaxies, and one quarter spiral galaxies. Observations of clusters at redshift 0.5 show a perspicuously different ratio, the dominant galaxy type are spiral galaxies with a fraction of two quarters while the number of S0 galaxies decreases to a fraction of one quarter (Dressler et al. 1997). This shows an evolution of the galaxy population in clusters since redshift 0.5 and it has been suspected that galaxy transformation processes during the infall into a cluster are responsible for this change. These could be merging, starburst or ram-pressure stripping. We use our evolutionary synthesis models to describe various possible effects of those interactions on the star formation of spiral galaxies infalling into clusters. We study the effects of starbursts of various strengths as well as of the truncation of star formation at various epochs on the color and luminosity evolution of model galaxies of various spectral types. As a first application we present the comparison of our models with observed properties of the local S0 galaxy population to constrain possible S0 formation mechanisms in clusters. Application to other types of galaxies is planned for the future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at   z = 0  . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.  相似文献   

6.
We measured metal abundances of the intracluster medium in the central regions of 34 nearby clusters of galaxies, using ASCA data. Clusters that have a sharp X-ray emission centred on a cD galaxy are commonly found to exhibit a central increment in the Fe abundance, which is more pronounced in lower temperature clusters; +(0.1–0.2) solar at kT >5 keV, compared with +(0.2–0.3) solar at 1.5< kT <4 keV. These central excess metals are thought to be ejected from cD galaxies. Several low-temperature cD type clusters also show significant Si abundance increase by +(0.1–0.2) solar at the central region. Compared with the Si-rich abundances observed in the outer regions of rich clusters, the Si to Fe abundance ratio of central excess metals tends to be near the solar ratio, implying that type Ia products from cD galaxies are dominant for the central excess metals. On the other hand, some other clusters do not show the central Fe abundance increase. As these clusters tend to contain two or three central giant galaxies, it is suggested that galaxy interactions have removed the central abundance increase.  相似文献   

7.
在对不同光度星系大尺度分布进行空间两点相关函数分析的基础上,仍以CfA红移巡天资料为样本,对不同光度星系分布进行了交叉相关分析。结果表明,不同光度星系间的交叉相关函数仍可近似地以幂函数表示,说明不同光度星系在空间是一起成团的。但在较小尺度上((?)4—6Mpc),光度较高的星系间相关更强,而在更大一些尺度上光度较高的星系间相关减弱更快,甚至变得比与光度较低星系间的相关更弱。结合前面对自相关函数分析的结果可以看到,统计上看来,星系分布形成群和团。群或团中亮的星系形成更致密的分布而较暗的星系则在这些群和团中分布较弥散。此结果表明星系光度和其环境(密度)有关,从而从观测上为Biased星系形成理论提供了一个可能的证据。  相似文献   

8.
Highly magnified lensed galaxies allow us to probe the morphological and spectroscopic properties of high-redshift stellar systems in great detail. However, such objects are rare, and there are only a handful of lensed galaxies that are bright enough for a high-resolution spectroscopic study with current instrumentation. We report the discovery of a new massive lensing cluster, SDSS J120923.7+264047, at z = 0.558. Present around the cluster core, at angular distances of up to ∼40 arcsec, are many arcs and arc candidates, presumably due to lensing of background galaxies by the cluster gravitational potential. One of the arcs, 21 arcsec long, has an r -band magnitude of 20, making it one of the brightest known lensed galaxies. We obtained a low-resolution spectrum of this galaxy, using the Keck-I telescope, and found it is at redshift of z = 1.018.  相似文献   

9.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

10.
We present discovery images, together with follow-up imaging and spectroscopy, of two large-separation gravitational lenses found by our survey for wide arcs [the CAmbridge Sloan Survey Of Wide ARcs in the skY (CASSOWARY)]. The survey exploits the multicolour photometry of the Sloan Digital Sky Survey to find multiple blue components around red galaxies. CASSOWARY 2 (or 'the Cheshire Cat') is composed of two massive early-type galaxies at   z = 0.426  and 0.432, respectively, lensing two background sources, the first a star-forming galaxy at   z = 0.97  and the second a high -redshift galaxy  ( z > 1.4)  . There are at least three images of the former source and probably four or more of the latter, arranged in two giant arcs. The mass enclosed within the larger arc of radius ∼11 arcsec is  ∼33 × 1012 M  . CASSOWARY 3 comprises an arc of three bright images of a   z = 0.725  source, lensed by a foreground elliptical at   z = 0.274  . The radius of the arc is ∼4 arcsec and the enclosed mass is  ∼2.5 × 1012 M  . Together with earlier discoveries like the Cosmic Horseshoe and the 8 o'clock Arc, these new systems, with separations intermediate between the arcsecond-separation lenses of typical strong galaxy lensing and arcminute-separation cluster lenses, probe the very high end of the galaxy mass function.  相似文献   

11.
We present an analysis of the spatial orientations of 1315 galaxies in 10 Abell clusters of BM type II–III (type II–III in the Bautz–Morgan system). It is found that the spin-vector orientations of the galaxies in six clusters (Abell 168, 426, 1035, 1227, 1367 and 1904) tend to lie parallel to the Local Supercluster (LSC) plane. The spin-vector projections of galaxies in six clusters (Abell 168, 1020, 1035, 1227, 1904 and 1920) are found to be oriented perpendicular with respect to the direction of the LSC centre. Three clusters (Abell 1920, 2255 and 2256) show a bimodal orientation: spin vectors tend to be oriented both parallel and perpendicular to the LSC plane. No dependence of radial velocity, distance and cluster magnitude on galaxy orientation is noticed. In a comparison with previous work, we noticed that the anisotropy might increase from early-type (BM type I) to late-type (BM types II–III and III) clusters. We notice a vanishing angular momentum for the less massive galaxy clusters (richness class 0). A significant alignment of the angular momenta of galaxies for massive clusters, e.g. the core of the Shapley Supercluster (richness class 4,   M > 1015 M  ), is found.  相似文献   

12.
X-ray observations of galaxy clusters have shown that the intra-cluster gas has iron abundances of about one-third of the solar value. These observations also show that part (if not all) of the intra-cluster gas metals was produced within the member galaxies. We present a systematic analysis of 20 galaxy clusters to explore the connection between the iron mass and the total luminosity of early- and late-type galaxies, and of the brightest cluster galaxies (BCGs). From our results, the intra-cluster medium (ICM) iron mass seems to correlate better with the luminosity of the BCGs than with that of the red and blue galaxy populations. As the BCGs cannot produce alone the observed amount of iron, we suggest that ram-pressure plus tidal stripping acts together to enhance, at the same time, the BCG luminosities and the iron mass in the ICM. Through the analysis of the iron yield, we have also estimated that SN Ia are responsible for more than 50 per cent of the total iron in the ICM. This result corroborates the fact that ram-pressure contributes to the gas removal from galaxies to the ICM, being very efficient for clusters in the temperature range  2 < kT (keV) < 10  .  相似文献   

13.
We analyse the two-point correlation function (2PCF) of galaxy groups identified from the 2-degree Field Galaxy Redshift Survey with the halo-based group finder recently developed by Yang et al. With this group catalogue we are able to estimate the 2PCFs for systems ranging from isolated galaxies to rich clusters of galaxies. The real-space correlation length obtained for these systems ranges from ∼4 to ∼15  h −1 Mpc, respectively. The observed correlation amplitude (and the corresponding bias factor) as a function of group abundance is well reproduced by associating galaxy groups with dark matter haloes in the standard Λ-cold dark matter model. Redshift distortions are clearly detected in the redshift-space correlation function, the degree of which is consistent with the assumption of gravitational clustering and halo bias in the cosmic density field. In agreement with previous studies we find a strong increase of the correlation length with the mean intergroup separation. Although well-determined observationally, we show that current theoretical predictions are not yet accurate enough to allow for stringent constraints on cosmological parameters. Finally, we use our results to explore the power-law nature of the 2PCF of galaxies. We split the 2PCF into one- and two-group terms, equivalent to the one- and two-halo terms in halo occupation models, and show that the power-law form of the 2PCF is broken, when only including galaxies in the more massive systems.  相似文献   

14.
An analysis of the environments around a sample of 28 3CR radio galaxies with redshifts 0.6< z <1.8 is presented, based primarily upon K -band images down to K ∼20 taken using the UK Infrared Telescope (UKIRT). A net overdensity of K -band galaxies is found in the fields of the radio galaxies, with the mean excess counts being comparable to that expected for clusters of Abell Class 0 richness. A sharp peak is found in the angular cross-correlation amplitude centred on the radio galaxies that, for reasonable assumptions about the luminosity function of the galaxies, corresponds to a spatial cross-correlation amplitude between those determined for low-redshift Abell Class 0 and 1 clusters.
These data are complemented by J -band images also from UKIRT, and by optical images from the Hubble Space Telescope . The fields of the lower redshift ( z ≲0.9) radio galaxies in the sample generally show well-defined near-infrared colour–magnitude relations with little scatter, indicating a significant number of galaxies at the redshift of the radio galaxy; the relations involving colours at shorter wavelengths than the 4000 Å break show considerably greater scatter, suggesting that many of the cluster galaxies have low levels of recent or on-going star formation. At higher redshifts the colour–magnitude sequences are less prominent owing to the increased field galaxy contribution at faint magnitudes, but there is a statistical excess of galaxies with the very red infrared colours ( J − K ≳1.75) expected of old cluster galaxies at these redshifts.
Although these results are appropriate for the mean of all of the radio galaxy fields, there exist large field-to-field variations in the richness of the environments. Many, but certainly not all, powerful z ∼1 radio galaxies lie in (proto)cluster environments.  相似文献   

15.
The dynamical signatures of the interaction between galaxies in clusters and the intracluster medium (ICM) can potentially yield significant information about the structure and dynamical history of clusters. To develop our understanding of this phenomenon we present results from numerical modelling of the galaxy–ICM interaction, as the galaxy moves through the cluster. The simulations have been performed for a broad range of ICM temperatures ( kT cl=1, 4 and 8 keV), representative of poor clusters or groups through to rich clusters.
There are several dynamical features that can be identified in these simulations. For supersonic galaxy motion, a leading bow shock is present, and also a weak gravitationally focused wake or tail behind the galaxy (analogous to Bondi–Hoyle accretion). For galaxies with higher mass replenishment rates and a denser interstellar medium (ISM), the dominant feature is a dense ram-pressure stripped tail. In line with other simulations, we find that the ICM/galaxy–ISM interaction can result in complex time-dependent dynamics, with ram-pressure stripping occurring in an episodic manner.
In order to facilitate this comparison between the observational consequences of dynamical studies and X-ray observations we have calculated synthetic X-ray flux and hardness maps from these simulations. These calculations predict that the ram-pressure stripped tail will usually be the most visible feature, though in nearby galaxies the bow shock preceding the galaxy should also be apparent in deeper X-ray observations. We briefly discuss these results and compare them with X-ray observations of galaxies where there is evidence of such interactions.  相似文献   

16.
We investigate the history of galactic feedback and chemical enrichment within a sample of 15 X-ray bright groups of galaxies, on the basis of the inferred Fe and Si distributions in the hot gas and the associated metal masses produced by core-collapse and Type Ia supernovae (SNe). Most of these cool-core groups show a central Fe and Si excess, which can be explained by prolonged enrichment by SN Ia and stellar winds in the central early-type galaxy alone, but with tentative evidence for additional processes contributing to core enrichment in hotter groups. Inferred metal mass-to-light ratios inside r 500 show a positive correlation with total group mass but are generally significantly lower than in clusters, due to a combination of lower global intracluster medium (ICM) abundances and gas-to-light ratios in groups. This metal deficiency is present for products from both SN Ia and SN II, and suggests that metals were either synthesized, released from galaxies or retained within the ICM less efficiently in lower mass systems. We explore possible causes, including variations in galaxy formation and metal release efficiency, cooling out of metals, and gas and metal loss via active galactic nuclei (AGN) – or starburst-driven galactic winds from groups or their precursor filaments. Loss of enriched material from filaments coupled with post-collapse AGN feedback emerges as viable explanations, but we also find evidence for metals to have been released less efficiently from galaxies in cooler groups and for the ICM in these to appear chemically less evolved, possibly reflecting more extended star formation histories in less massive systems. Some implications for the hierarchical growth of clusters from groups are briefly discussed.  相似文献   

17.
A large number of early-type galaxies are now known to possess blue and red subpopulations of globular clusters. We have compiled a data base of 28 such galaxies exhibiting bimodal globular cluster colour distributions. After converting to a common V – I colour system, we investigate correlations between the mean colour of the blue and red subpopulations with galaxy velocity dispersion. We support previous claims that the mean colours of the blue globular clusters are unrelated to their host galaxy. They must have formed rather independently of the galaxy potential they now inhabit. The mean blue colour is similar to that for halo globular clusters in our Galaxy and M31. The red globular clusters, on the other hand, reveal a strong correlation with galaxy velocity dispersion. Furthermore, in well-studied galaxies the red subpopulation has similar, and possibly identical, colours to the galaxy halo stars. Our results indicate an intimate link between the red globular clusters and the host galaxy; they share a common formation history. A natural explanation for these trends would be the formation of the red globular clusters during galaxy collapse.  相似文献   

18.
Hubble Space Telescope observations of distant clusters have suggested a steep increase in the proportion of S0 galaxies between clusters at high redshifts and similar systems at the present day. It has been proposed that this increase results from the transformation of the morphologies of accreted field galaxies from spirals to S0s. We have simulated the evolution of the morphological mix in clusters based on a simple phenomenological model where the clusters accrete a mix of galaxies from the surrounding field, the spiral galaxies are transformed to S0s (through an unspecified process) and are added to the existing cluster population. We find that in order to reproduce the apparently rapid increase in the ratio of S0 galaxies to ellipticals in the clusters, our model requires that: (1) the galaxy accretion rate has to be high (typically, more than half of the present-day cluster population must have been accreted since z ∼0.5) , and (2) most of the accreted spirals, with morphological types as late as Scdm, must have transformed to S0s. Although the latter requirement may be difficult to meet, it is possible that such bulge-weak spirals have already been 'pre-processed' into the bulge-strong galaxies prior to entering the cluster core and are eventually transformed into S0s in the cluster environment. On the basis of the evolution of the general morphological mix in clusters our model suggests that the process responsible for the morphological transformation takes a relatively long time (∼ 1–3 Gyr) after the galaxy has entered the cluster environment.  相似文献   

19.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

20.
We analyse the relation between active galactic nuclei (AGN) host properties and large-scale environment for a representative red and blue AGN host galaxy sample selected from the Data Release 4 Sloan Digital Sky Survey. A comparison is made with two carefully constructed control samples of non-active galaxies, covering the same redshift range and colour baseline. The cross-correlation functions show that the density distribution of neighbours is almost identical for blue galaxies, either active or non-active. Although active red galaxies inhabit environments less dense compared to non-active red galaxies, both reside in environments considerably denser than those of blue hosts. Moreover, the radial density profile of AGN relative to galaxy group centres is less concentrated than galaxies. This is particularly evident when comparing red AGN and non-active galaxies.
The properties of the neighbouring galaxies of blue and red AGN and non active galaxies reflect this effect. While the neighbourhood of the blue samples is indistinguishable, the red AGN environs show an excess of blue-star-forming galaxies with respect to their non-active counterpart. On the other hand, the active and non-active blue systems have similar environments but markedly different morphological distributions, showing an excess of blue early-type AGN, which are argued to be late-stage mergers. This comparison reveals that the observable differences between active red and blue host galaxy properties including star formation history and AGN activity depends on the environment within which the galaxies form and evolve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号