首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The investigation of the intrinsic properties of the solar spectral irradiance as a function of the ultraviolet (UV) wavelength is attempted by exploiting rare observations performed at the Villard St. Pancrace station of the Lille University of Sciences and Technology ranging from 278 to 400 nm with a step of 0.05 nm every half an hour from nearly sunrise to sunset. To achieve this goal, the modern method of the detrended fluctuation analysis was applied on the solar spectral irradiance values versus wavelength. This analysis revealed that the solar incident flux at the top of the atmosphere and the solar spectral irradiance at the ground during two overcast sky days fluctuate with the UV wavelength exhibiting persistent long-range power-law behavior. More interestingly, the exponent of the power-law relationship between the fluctuations of the solar spectral irradiance versus UV wavelength at both the top of the atmosphere and the ground is consistently close to unity (of 1/f-type) throughout the day. This 1/f behavior has been detected in many complex dynamical systems, but despite much effort to derive a theory for its widespread occurrence in nature, it remains unexplained so far. According to the above-mentioned findings we speculate that the 1/f property of the incident solar UV flux at the top of the atmosphere could probably drive both the 1/f behavior depicted in the atmospheric components and the solar UV irradiance at the Earth's surface. The latter could influence the UV-sensitive biological ecosystems, giving rise to a 1/f-type variability in the biosphere, which has already been proven by recent observational data. We finally propose that Wien approximation could be multiplied by a 1/f function of wavelength (e.g., of the type of the fractional Brownian motion) in order to reproduce the aforementioned 1/f feature of the solar UV flux.  相似文献   

2.
The ultraviolet (UV) spectra on cloudy days were compared to those on cloud free days to determine which part of the UV spectrum has the greatest enhancement due to the cloud compared to both corresponding measured clear sky spectra as well as other enhanced spectra. In this preliminary study, cloud enhanced UV spectra selected for maximum UVA enhancement compared to a clear sky UV spectrum at similar solar zenith angle (SZA) and ozone values, showed that the ratio of the two sets of spectral irradiances was approximately wavelength independent (approximately 1.1) above the cut-off wavelength of approximately 306 nm. Similarly, above 306 nm the average ratio of the spectral irradiances of a maximum UVB enhanced UV spectrum compared to a clear sky spectrum was 1.2 with maximum values generally above this average between 316 and 344 nm and generally below 1.2 above the wavelength of 344 nm. The UVA and UVB enhanced spectra were separated into five SZA ranges and the irradiance at each wavelength averaged for each range and compared to clear sky spectra in each of the ranges. Above approximately 306 nm, the ratios are wavelength independent for all SZA. However, with the exception of the SZA range centred on 20°, there is an increasing dependency with shorter wavelengths below the 306 nm. Also there appears to be two distinct groupings of the average irradiance ratios, corresponding to the SZA range centred on 20°, 37° and 49° (ratio of 1.2) and 32° and 42° (ratio 1.0), the latter cases suggesting that on average there is no enhancement for these SZA, except for wavelengths less than 306 nm.  相似文献   

3.
4.
Summary Erythemal weighted solar UV irradiances, responsible for damage to human skin, need to be known for arbitrarily oriented surfaces, since human skin has various orientations to the sun. A model for determining such irradiances is presented with the results in good agreement with measurements. The model gives spectral or biologically weighted irradiances for any user-defined orientation of a flat receiver and for selectable atmospheric and surface conditions.  相似文献   

5.
Summary ¶The paper deals with the computation of solar energy available in a specific location. First, a new formula describing the relation between global solar irradiation and the duration of bright sunshine is established. The analysis of its use shows that global solar clear sky irradiance models are essential tools for daily computation of global irradiation. An integrated spectral atmospheric transmittance model is presented, it can be used to compute beam and diffuse clear sky irradiance for all applications where broadband solar energy input is needed. Since it is desirable to use simplified estimation methods for many applications, a parametric global solar irradiance model, derived from the spectral model, is also presented. This model needs only surface meteorological data as input. The influence of the averaging method used for the input parameters on the model accuracy is evaluated. Comparison of model results with the measurements shows an acceptable level of accuracy with the new model. Finally, an application of daily global solar energy computation is presented.Received May 17, 2002; revised October 14, 2002; accepted February 11, 2003 Published online September 10, 2003  相似文献   

6.
The purpose of this study is to examine the effect of clouds on the ultraviolet erythemal irradiance. The study was developed at three stations in the Iberian Peninsula: Madrid and Murcia, using data recorded in the period 2000–2001, and Zaragoza, using data recorded in 2001. In order to determine the cloud effect on ultraviolet erythemal irradiance, we considered a cloud modification factor defined as the ratio between the measured values of ultraviolet erythemal irradiance and the corresponding clear-sky ultraviolet erythemal irradiance, which would be expected for the same time period and atmospheric conditions. The dependence of this cloud modification factor on total cloud amount, cloud type and solar elevation angle was investigated. The results suggest that the effect of cloud on ultraviolet erythemal irradiance can be parameterized in a simple way in terms of the cloud amount. Our results suggest that the same cloud modification factor model can be used at the three analysed locations estimating the ultraviolet erythemal irradiance with mean bias deviation (MBD) in the range of the expected experimental errors. This cloud modification factor is lower than that associated to the whole solar spectral range, indicating that the attenuation for the ultraviolet erythemal irradiance is lower than that associated to other solar spectral ranges. The cloud modification factor for ultraviolet erythemal irradiance presents dependence with solar elevation, with opposite dependencies with solar elevation for overcast and partial cloud cover conditions, a fact that can be explained in terms of the influence of reflection-enhancement of the ultraviolet irradiance in the last case. Concerning the influence of cloud type, a limited study of two cloud categories, low and medium level and high level, indicated that for overcast conditions, lower clouds presents an attenuation of ultraviolet erythemal irradiance 20% greater than that associated to high level clouds.  相似文献   

7.
Summary At the high-mountain station Jungfraujoch (3576 m a.s.l., Switzerland), measurements of the radiation fluxes were made during 16 periods of six to eight weeks by means of a Robertson—Berger sunburn meter (UVB data), an Eppley UVA radiometer and an Eppley pyranometer. Cloudiness, opacity and altitude of clouds were recorded at 30-minute intervals. A second set of instruments was employed for separate measurement of the diffuse radiation fluxes using shadow bands. The global and diffuse UVA- and UVB radiation fluxes change less with cloudiness than the corresponding total radiation fluxes. When the sun is covered by clouds, the global UVA- and UVB radiation fluxes are also affected less than the global total radiation flux. The roughly equal influence of cloudiness on the UVA- and UVB radiation fluxes suggests that the reduction is influenced more by scattering than by ozone. Also, the share of diffuse irradiance in global irradiance is considerably higher for UVA- and UVB irradiance than for total irradiance. At 50° solar elevation and 0/10 cloudiness, the share is 39% for UVB irradiance, 34% for UVA irradiance and 11% for total irradiance. The increased aerosol turbidity after the eruptions of El Chichon and Pinatubo has caused a significant increase in diffuse total irradiance but has not produced any significant changes in diffuse UVA- and UVB irradiances.With 7 Figures  相似文献   

8.
9.
The influence of various cloud parameters and the interactions with the ground albedo and the solar zenith angle have been studied by means of model simulations. The radiative transfer model suitable for a cloudy atmosphere as well as for a clear atmosphere has been developed on the basis of the Discrete Ordinate Method. This study leads to a general understanding for cloudy atmospheres: in the presence of a uniform cloud, the cloud scattering is dominant to molecular and aerosol scattering, and it is also wavelength-independent; the ratio of transmitted irradiance in a cloudy atmosphere to that in the background clear atmosphere is independent of cloud height and solar zenith angle. That’s to say, the radiation downwelling out of a cloud is quite isotropic; it decreases approximately exponentially with the cloud optical depth at a rate related to the ground albedo; the reflected irradiance at the top of the atmosphere is dependent on cloud optical depth as well as on solar zenith angle, but not on ground albedo for clouds of not very thin optical depth.  相似文献   

10.
Summary The dependency of erythemal weighted solar UV irradiance on tilted surfaces with different orientation is investigated with respect to solar zenith angle, variable atmospheric conditions and albedo of the location. For overcast conditions or a cloud in front of the sun, the irradiance on a horizontal surface in general is largest, with the consequence that it is reduced for surfaces with any tilted position. For cloud free conditions the irradiance on a tilted plane, in comparison to that on a horizontal flat surface, is increased for orientations towards the sun, but reduced for other orientations. The increase is strongest for low sun in combination with clear atmosphere and high ground albedo, as is typical for snow covered mountain conditions.  相似文献   

11.
12.
High-quality long-term records of spectral UV irradiance from the Network for the Detection of Atmospheric Composition Change-affiliated Bentham spectroradiometer at the high-mountain site Hoher Sonnblick (47.05° N, 12.95° E, 3,106?m above sea level) from the period 1997?C2011 have been investigated for the existence of trends. Throughout the year, significant upward trends are found at wavelengths of 315?nm and longer. The magnitudes at 315?nm range from +9.3?±?4.5?%/dec at 45° solar zenith angle (SZA) to +14.2?±?3.7?%/dec at SZA 65° for all-sky conditions. The trend estimates at 305?nm are considerably smaller and less significant, yielding between +5.1?±?6.5 and +7.9?±?7.3?%/dec, depending on SZA. Seasonally, the largest trends are found during winter and spring. Total ozone has significantly increased by year-round +1.9?±?1.3?%/dec since 1997 and therefore cannot explain these significant increases. They are rather attributed to decreases in total cloud cover and aerosol optical depth.  相似文献   

13.
Summary The modifications of the solar spectral diffuse and direct-beam irradiances as well as the diffuse-to-direct-beam ratio, E/E, as a function of the aerosol optical depth, AOD, and solar zenith angle, SZA, is investigated. The E/E ratios decrease rapidly with wavelength and exponential curves in the form E/E = aλ−b can be fitted with a great accuracy. These curves are strongly modified by the solar spectrum distribution, which is affected by the aerosol loading, aerosol optical properties and SZA. The spectral dependence of the above E/E ratios in logarithmic coordinates does not yield a straight line, while a significant departure from the linearity is revealed. The reasons for this departure are investigated in detail and it is established that the aerosol physical properties such as single scattering albedo and size distribution along with the effect of SZA are responsible. These parameters strongly affect the scattering processes in the atmosphere and as a consequence the diffuse spectral distribution. The E/E ratio, which is an indicator of the atmospheric transmittance (King, 1979), exhibits a strong wavelength and aerosol-loading dependence. The observed differences between turbid and clear atmospheres constitute a manifestation of contrasting air properties and influence solar irradiance spectra. The present work aims at investigating the effect of atmospheric turbidity and SZA on the E/E ratio. For this reason, two distinct cases are examined: one having different atmospheric turbidity conditions but same SZA and a second having different SZAs and same atmospheric turbidity levels.  相似文献   

14.
The precipitation of the entire Indian sub-continent is primarily driven by the monsoon wind system, which throws a tough challenge to model changes due to its natural variabilities. Additionally, the unique geographical location and diverse climatic condition of the Indian state of West Bengal (WB) accelerates this challenge even more. Such a situation can be more complicated if the assumption of randomness in the Mann-Kendall (MK) test is not taken care of. The present study inspects the dynamics of precipitation using the original MK test along with its three modified versions in WB. The modified versions are considered to incorporate all the significant autocorrelation coefficient (ACC) along with the short and long term persistence (STP and LTP) in the time series. Results showed that the presence of significant ACC was more common than the LTP behavior. The STP approach produced similar results to the original MK test, while the LTP approach reduced the number of significant trends. When the series was free from the scaling effect, consideration of all significant ACC gave better result in comparison to the STP approach. The annual precipitation is decreasing in large areas of WB, while the coastal areas are receiving increasing trends, which can intricate the estuarine and coastal processes. The Sub-Himalayan region and the western parts of WB are experiencing significant falling trend in monsoon season. Such a decreasing trend can enhance drought vulnerabilities, especially in the western parts of WB. However, the other three seasons (pre-monsoon, post-monsoon, and winter) witness the maximum number of non-significant trends.  相似文献   

15.
Summary This study investigated the impact of atmospheric aerosols on surface ultraviolet (UV) irradiance at Gwangju, Korea (35°13′N, 126°50′E). Data analyzed included surface UV irradiance measured by UV radiometers from June 1998 to April 2001 and the aerosol optical depth (AOD) in the visible range determined from a rotating shadow-band radiometer (RSR). The radiation amplification factor (RAF) of ozone for UV-B (280–315 nm) at Gwangju was 1.32–1.62. Values of the RAF of aerosols (RAFAOD) for UV-A and UV-B were 0.18–0.20 and 0.22–0.26, respectively. Authors’ addresses: Jeong Eun Kim, Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST) and Korea Meteorological Administration (KMA); Seong Yoon Ryu, Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST) and Division of Metrology, Korea Research Institute of Standards and Science (KRISS); Young Joon Kim, Advanced Environmental Monitoring Research Center (ADEMRC) Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea.  相似文献   

16.
Summary An analysis is made of the monthly mean global and diffuse irradiance values recorded by the Genoa University Geophysical Institute radiation network to derive characteristic elements of the solar climate in four typical NW Italy locations. Diffuse irradiation was estimated for the stations where diffuse irradiation data were not recorded, by using correlations between measured data with clearness parameter and sunshine index. Local factors which affect the attenuation of global irradiance under cloudless skies are discussed.
Zusammenfassung Die vom Strahlungsaufzeichnungsnetz der Geophysikalischen Hochschule Genua aufgenommenen monatlichen Mittelwerte der Global- und Himmelsstrahlung werden untersucht, wobei charakteristische Elemente des Sonnenklimas von vier typischen Stationen in NW-Italien deduziert werden. Die Himmelsstrahlung wird für diejenigen Stationen, wo diese nicht aufgenommen wird, durch Anwendung von Korrelationen zwischen Meßwerten und einem Klarheitsparameter bzw. einer Sonnenscheinzahl geschätzt. Außerdem werden örtliche Faktoren diskutiert, die die Schwächung der Globalstrahlung unter wolkenlosem Himmel bestimmen.


This paper is dedicated to the memory of Prof. Mario Bossolasco of whom the author had the honour of being a pupil.

With 2 Figures  相似文献   

17.
Summary ?The analysis of ground-based measurements of solar erythemal ultraviolet (UV) irradiance with a Solar Light 501 biometer, and total (300–3000 nm) irradiance with an Eppley B&W pyranometer at the Argentine Antarctic Base “Almirante Brown”, Paradise Bay (64.9° S, 62.9° W, 10 m a.s.l.) is presented. Measurement period extends from February 16 to March 28 2000. A relatively high mean albedo and a very clean atmosphere characterise the place. Sky conditions were of generally high cloud cover percentage. Clear-sky irradiance for each day was estimated with model calculations, and the effect of the cloudiness was studied through the ratio of measured to clear-sky value (r). Two particular cases were analysed: overcast sky without precipitation and overcast sky with rain or slight snowfall, the last one presenting frequently dense fog. Total irradiance was more attenuated than UV by the homogeneous cloudiness, obtaining mean r values of 0.54 for erythemal irradiance and 0.30 for total irradiance in the first case (without precipitation) and 0.27 and 0.17 respectively in the second case (with precipitation). Mean r values for the complete period were 0.58 for erythemal irradiance and 0.43 for total irradiance. Erythemal and total daily insolations reduce quickly at this epoch due to the increase of the noon solar zenith angle and the decrease of daylight time. Additionally, they were strongly modulated by cloudiness. Measured maxima were 2.71 kJ/m2 and 18.42 MJ/m2 respectively. Measurements were compared with satellite data. TOMS-inferred erythemal daily insolation shows the typical underestimation with respect to ground measurements at regions of high mean albedo. Measured mean total daily insolation agrees with climatological satellite data for the months of the campaign. Received August 9, 2002; revised January 4, 2003; accepted January 28, 2003 Published online May 20, 2003  相似文献   

18.
Summary In this study the trend of the time sequence of the integral aerosol optical depth (k a), as proposed by Unsworth and Monteith, was determined for clear days in summer for the period 1962–1988 in Athens. The trend was found by fitting a third degree polynomial curve and it was concluded that (k a) showed a considerable increase (i.e. from the value of 0.18 to 0.31) in the period 1962–1976 and remained approximately constant until 1979, after which it started decreasing again slowly until 1988. The increase of (k a) in the period 1962–1976 is likely attributable to the rapid development of the city in this period, while the decrease of (k a) after 1979 probably reflects the efficiency of some restrictions which were imposed on the pollutant emissions during this period. In addition, an analysis of the percentage frequency distribution found that while 95% of the values of (k a) ranged from 0.100 to 0.400 in the beginning of the period (1964–1967), in recent years (1984–1987) the same percentage of the values of (k a) ranged from 0.100 to 0.500.With 3 Figures  相似文献   

19.
Increasing carbon sequestration in agricultural soils in Canada is examined as a possible strategy in slowing or stopping the current increase in atmospheric CO2 concentrations. Estimates are provided on the amount of carbon that could be sequestered in soils in various regions in Canada by reducing summerfallow area, increased use of forage crops, improved erosion control, shifts from conventional to minimal and no-till, and more intensive use of fertilizers. The reduction of summerfallow by more intensive agriculture would increase the continuous cropland base by 8.1% in western Canada and 6.8% in all of Canada. Although increased organic carbon (OC) sequestration could be achieved in all agricultural regions, the greatest potential gains are in areas of Chernozemic soils. The best management options include reduction of summerfallow, conversion of fallow areas to hay or continuous cereals, fertilization to ensure nutrient balance, and adoption of soil conservation measures. The adoption of these options could sequester about 50-75% of the total agricultural emissions of CO2 in Canada for the next 30 years. However, increased sequestration of atmospheric carbon in the soil is possible for only a limited time. Increased efforts must be made to reduce emissions if long-term mitigation is to be achieved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号