首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The recent Heliophysics Virtual Observatory (VxO) effort involves the development of separate observatories with a low overlap in physical domain or area of scientific specialization and a high degree of overlap in metadata management needs. VxOware is a content and metadata management system. While it is intended for use by a VxO specifically, it can also be used by any entity that manages structured metadata. VxOware has many features of a content management system and extensively uses the W3C recommendations for XML (Extensible Markup Language), XQuery (XML Query), and XSLT (Extensible Style Sheet Language Transformations). VxOware has features such as system and user administration, search, user-editable content, version tracking, and a wiki. Besides virtual observatories, the intended user-base of VxOware includes a group or an instrument team that has developed a directory structure of data files and would like to make this data, and its associated metadata, available in the virtual observatory network. One of the most powerful features of VxOware is the ability to link any type of object in the observatory to other objects and the ability for every object to be tagged.  相似文献   

2.
Phase change of dielectric magnesiowüstite in the lower mantle may leave signatures in geomagnetic records of the globally distributed array of observatories. We investigate theoretically which may be the contribution of magnesiowüstite metallization to geomagnetic data and how the variations of magnetic susceptibility associated with this phase change may influence the Earth's field. The modeling is performed using spherical harmonic analysis (SHA) of mantle electromagnetic (EM) responses in observatory geomagnetic data at periods of decades, 11 years, 1 year, and 27 days. The existence of a lower mantle conductor is checked against monthly means of real observatory records from 1920 through 2009 obtained by preliminary processing.  相似文献   

3.
Lateral variations of the mid-mantle conductance beneath Europe   总被引:2,自引:0,他引:2  
Europe is a region with the largest density of geomagnetic observatories and several authors have used these data to estimate local geomagnetic response functions for various period ranges, typically of the width of 1.5 to 2.5 decades. By collecting the local response functions from 35 European observatories, and by their precise selection and subsequent combination, the independent regional geomagnetic induction data set could be extended to a period range of 4.5 decades. The initial local responses that were estimated by two magnetovariation methods, with two different external source fields employed, have been further supplemented by continental and global 11-year data, providing thus a data set extending over a period range from the harmonics of the daily variations up to 11 years. The combined responses have been inverted individually for each observatory by two techniques, by an Occam procedure and a stochastic 1D inversion for spherically symmetric Earth. The integrated mantle conductance has revealed rather regular lateral changes that have been used to design a mantle conductance image down to a depth of about 770 km. The presented conductance image can be correlated with major European tectonic units like the Baltic Shield and the Trans-European Suture Zone.To examine possible distortions to the inferred mantle conductance models due to large-scale near-surface heterogeneities, specifically those caused by the oceans, seas and large sedimentary basins, a spherical forward modeling was carried out for a radially symmetric conductor coated by an inhomogeneous thin shell with the variable surface conductance. The model responses for the 35 observatory positions were inverted in the same way as previously the experimental data. The results for 28 observatories have shown that the depth down to a pre-defined conductance level could be retrieved with a high accuracy of a few percents, but for seven southernmost observatories the recovery error increased up to 9%. With these seven observatories removed from the analysis, the effect of the seas and oceans on the upper and mid-mantle conductance estimates beneath Europe can be considered negligible.  相似文献   

4.
Within the TERENO initiative, four terrestrial observatories, collecting huge amounts of environmental data, are being set up since 2008. To manage, describe, exchange and publish these data, the distributed Spatial Data Infrastructure TEODOOR (http://www.tereno.net) was created. Each institution responsible for an individual observatory sets up its own local data infrastructure, which may communicate with each other to exchange data and metadata internally or to the public by OGC compliant Web services. The TEODOOR data portal serves as a database node to provide scientists and decision makers with reliable and well-accessible data and data products. Various tools like hierarchical search or Web-GIS functions allow a deeper insight into the different observatories, test sites and sensor networks. Sensor data can be queried and selected for measured parameters, stations and/or time periods, and can be visualized and downloaded according to a shared TERENO data policy. Currently, TEODOOR provides free access to data from more than 500 monitoring stations.  相似文献   

5.
Phase change of dielectric magnesiowustite in the lower mantle may leave signatures in geomagnetic records of the globally distributed array of observatories. The related features appear in EM induction responses of lower mantle, which are studied theoretically. The surface EM field corresponding to a response of the earth with conductivity anisotropy in a mantle spherical layer is presented as the sum of the magnetic and electric modes. Equations for the fields of both modes and their relationship in a weakly anisotropic earth are obtained by the perturbation method. The two field modes are analyzed jointly and separately to characterize the conductivity tensor of the anisotropic lower mantle. The tensor elements corresponding to the tangential components of the field can be estimated from the magnetic mode alone recorded currently by the global network of geomagnetic observatories. For the tensor data to be complete, observatory data on lateral variations of the electric field are required in addition to three-component geomagnetic records.  相似文献   

6.
Our ability to deal with complex systems has improved through information system research which includes improved modeling (both data and system), the use of semantics and advances in distributed computing. The past decade has seen an explosion in the amount and variety of geosciences data and the emergence of true open data repositories through which scientists can freely access this data. Those data are found in thousands of repositories located around the world. Virtual observatories have been created to address the challenge of helping scientists search those repositories to find and access the required data. This challenge is been addressed by using technologies such as the Internet (with ample connectivity and bandwidth), the Web, cheap computing power, cheap storage and standards for critical components. Many scientific disciplines are developing virtual observatories. Yet some of the most compelling science questions cross multiple domains. While semantics can provide cross domain reasoning, often the first step in answering a question is determining what resources are available which may be relevant to a topic. The topic can be expressed as simple phrases or word sequences. Using a common relevance scoring method at all locations can enable a federated search across loosely coupled providers. The results of which can be organized into facets to aid the user in selecting the most promising resources with which to pursue the scientific investigation. We describe an approach to developing and deploying relevance scoring methods and faceted results in this brave new (virtual) world. We have found that a scoring method which considers both the presence of terms and the proximity of these terms relative to the order of the terms in the query improves the assessment of relevance. We call this Term Presence-Proximity (TPP) scoring and describe a method for calculating a normalized score. TPP scoring compares favorably with other scoring approaches.  相似文献   

7.
Earthquake prediction studies in Japan have made progress since a national program was officially launched in 1965. A sum of 18 million dollars has been allocated for the program in addition to expenses for salaries, construction of observatories and other supporting routines. As a result, 17 crustal deformation observatories, 19 microearthquake observatories and 1 magnetic observatory, all equipped with modern instruments have been completed. It has also become possible to repeat the first-order levelling surveys along levelling routes of 20,000 km in length with an interval of five years.The program has been tested during the 1965—1966 Matsushiro activity of swarm earthquakes. Judging from the fact that long-term predictions could be issued to the public from time to time during the active period, the program would seem to be directed in the right direction. An anomalous land deformation has been found in an area south of Tokyo in 1969. An operation to investigate the anomaly has been carried out intensively over the area concerned with special emphasis on detecting the possibilities of a large earthquake occurring there.Intensification of the program orientated towards actual prediction is now under consideration. A more extensive program including a nation-wide network of geodimeter surveys, real-time monitoring of microearthquakes, real-time observations by oceanbottom seismographs and other disciplines is going to be planned.  相似文献   

8.
We discuss approaches to mapping lateral apparent conductivity variations at different periods from magnetic observatory data using multipoint transfer operators as nonlocal functions of the EM response. The multipoint operators provide correlation of three magnetic field components recorded at all observatories. The inversion procedure was applied to Sq observatory data for 1964–68 and records of 30 magnetic storms for 1957–2001. To obtain lateral conductivity patterns, data on diurnal Sq variations and global magnetic storms were processed with the spherical harmonic analysis. The same data were used to estimate the coefficients of first harmonics in the SH series of diurnal lateral variations of Earth's apparent conductivity.  相似文献   

9.
10.
The article presents a review of scientific problems and methods of ultraviolet astronomy, focusing on perspective scientific problems (directions) whose solution requires UV space observatories. These include reionization and the history of star formation in the Universe, searches for dark baryonic matter, physical and chemical processes in the interstellar medium and protoplanetary disks, the physics of accretion and outflows in astrophysical objects, from Active Galactic Nuclei to close binary stars, stellar activity (for both low-mass and high-mass stars), and processes occurring in the atmospheres of both planets in the solar system and exoplanets. Technological progress in UV astronomy achieved in recent years is also considered. The well advanced, international, Russian-led Spektr-UV (World Space Observatory—Ultraviolet) project is described in more detail. This project is directed at creating a major space observatory operational in the ultraviolet (115–310 nm). This observatory will provide an effective, and possibly the only, powerful means of observing in this spectral range over the next ten years, and will be an powerful tool for resolving many topical scientific problems.  相似文献   

11.
Geodynamic observatories around the globe continuously monitor signals like gravity, tilt and strain as a function of time. However, global signals are often masked by local effects, caused by the direct surroundings of the station, including the local geological setting. This link is well established for superconducting gravimeters (SG) that observe the gravity field variations at very high resolution. An enhancement of the SG time series by the application of local correction is exemplarily shown here in a very practicable procedure for the Geodynamic Observatory Moxa, Germany. We show how the combination of geological and gravimetrical mapping and modelling around Moxa results in a significant correction of the original gravity data, as can be proven by comparison with the satellite-derived gravity field. Detailed geological mapping of the observatory surroundings, including measurements of fold axes, foliations and joints, was the basis of the present study. The fold structure in the area of interest was interpreted by geometrical 3D modelling. The complete representation of different rock types in space also provides a better understanding of the local hydro-geological situation. Using a combination of the 3D geological model with the high-resolution Bouguer map of the observatory surroundings, we developed a 3D density model. This model enables the correction of small gravity effects caused by mass variations close to the SG, in particular local hydro-geological mass changes. Thus, the procedure presented here, based on a close connection of geology and gravimetry, is a powerful tool for the reduction of local gravity effects on SG recordings. It should be applicable to SG stations worldwide, where similar hydrologically driven mass changes can be assumed.  相似文献   

12.
We present data analysis of multi-electrode measurements performed in the tectonosphere-atmosphere interface at Pizzoli and Chieti observatories located at distances 30–50 km and 90–110 km from earthquakes epicenters in Central Italy accordingly. Time intervals include 30 days of observations before earthquakes occurred on 24 August (M6.2), on 26 October (M6.1) and on 30 October, 2016 (M6.6). The recorded signals are two component time series with time step 1 s representing alternative and direct electromotive force components. Alternative electromotive force component in frequency band of 0.01 Hz to 4000 Hz is being recorded. Basic study has been carried out since 1989 at Kamchatka peninsula and since 2012 across Eurasia. The observation of nonstationary electric processes illustrates the nucleation of seismogenetic activity. We propose the hypothesis that nonstationary (sudden, abrupt in amplitude) electrical signals illustrate the proton permeability of rocks laying underneath the measuring sensor including a unique phenomenon of anomalous spontaneous deformation due to combination of proton environment and polymorphic transformation in condensed media. One of the interesting results is distinguishing the main zone of major earthquake nucleation which is corresponding as the earthquakes epicenters in Central Italy with M > 6. We suggest that by covering the northern, central and southern parts of Italy with a network of multi-electrode observatories near fault lines, towns and villages could pinpoint the possible coordinates of earthquake epicenter in a 30 day time window. The Chieti and Pizzoli observatories can form the basis of an extended network.  相似文献   

13.
We describe the Russian Virtual Observatory (RVO), a prestigious international project sponsored by the Russian Academy of Sciences (RAS). In 2001, the RAS Scientific Council on Astronomy included this project in a list of the most important international projects of the RAS. Its main goal to create and develop the RVO, intended to provide Russian astronomers with direct and effective access to worldwide astronomical data resources. The RVO is one component of the International Virtual Observatory (IVO), a system in which vast astronomical archives and databases around the world, together with analysis tools and computational services, are linked together into an integrated facility. The IVO unites all important national and international projects to create virtual observatories, coordinated by the International Virtual Observatory Alliance. The RVO is one of the organizers and an important participant of the IVO Alliance.  相似文献   

14.
Today parallel visualization of massive datasets from observation and numerical simulation of seismic waves is one of the major goals of geoscience community. A majority of these datasets are time-varying volume data (TVVD), also known as 4D field data. The difficulty of visualizing them on distributed parallel system mainly lies in the algorithm designing for distributed preprocessing of raw datasets, hierarchical point-to-point or collective communication implementation based on distributed data allocation, synchronous volume rendering techniques. In this work we present viable solutions for preprocessing of raw data sets, novel algorithms of parallel rendering and display matrix. Our main objective is focused on the parallel visualization of results coming from full 4D seismic wave propagation simulations.  相似文献   

15.
The growth of data volumes in science is reaching epidemic proportions. Consequently, the status of data-oriented science as a research methodology needs to be elevated to that of the more established scientific approaches of experimentation, theoretical modeling, and simulation. Data-oriented scientific discovery is sometimes referred to as the new science of X-Informatics, where X refers to any science (e.g., Bio-, Geo-, Astro-) and informatics refers to the discipline of organizing, describing, accessing, integrating, mining, and analyzing diverse data resources for scientific discovery. Many scientific disciplines are developing formal sub-disciplines that are information-rich and data-based, to such an extent that these are now stand-alone research and academic programs recognized on their own merits. These disciplines include bioinformatics and geoinformatics, and will soon include astroinformatics. We introduce Astroinformatics, the new data-oriented approach to 21st century astronomy research and education. In astronomy, petascale sky surveys will soon challenge our traditional research approaches and will radically transform how we train the next generation of astronomers, whose experiences with data are now increasingly more virtual (through online databases) than physical (through trips to mountaintop observatories). We describe Astroinformatics as a rigorous approach to these challenges. We also describe initiatives in science education (not only in astronomy) through which students are trained to access large distributed data repositories, to conduct meaningful scientific inquiries into the data, to mine and analyze the data, and to make data-driven scientific discoveries. These are essential skills for all 21st century scientists, particularly in astronomy as major new multi-wavelength sky surveys (that produce petascale databases and image archives) and grand-scale simulations (that generate enormous outputs for model universes, such as the Millennium Simulation) become core research components for a significant fraction of astronomical researchers.  相似文献   

16.
The Regional Climate Model Evaluation System (RCMES) facilitates the rapid, flexible inclusion of NASA observations into climate model evaluations. RCMES provides two fundamental components. A database (RCMED) is a scalable point-oriented cloud database used to elastically store remote sensing observations and to make them available using a space time query interface. The analysis toolkit (RCMET) is a Python-based toolkit that can be delivered as a cloud virtual machine, or as an installer package deployed using Python Buildout to users in order to allow for temporal and spatial regridding, metrics calculation (RMSE, bias, PDFs, etc.) and end-user visualization. RCMET is available to users in an “offline”, lone scientist mode based on a virtual machine dynamically constructed with model outputs and observations to evaluate; or on an institution’s computational cluster seated close to the observations and model outputs. We have leveraged RCMES within the content of the Coordinated Regional Downscaling Experiment (CORDEX) project, working with the University of Cape Town and other institutions to compare the model output to NASA remote sensing data; in addition we are also working with the North American Regional Climate Change Assessment Program (NARCCAP). In this paper we explain the contribution of cloud computing to RCMES’s specifically describing studies of various cloud databases we evaluated for RCMED, and virtualization toolkits for RCMET, and their potential strengths in delivering user-created dynamic regional climate model evaluation virtual machines for our users.  相似文献   

17.
Journal of Earth System Science - Short-period events such as bays and SSCs have been analysed to investigate the nature of conductivity anomalies at two Indian magnetic observatories: Ujjain (UJJ)...  相似文献   

18.
2005年夏,一个先进的海洋观测网络——包括实时的光纤海洋观测系统和内部存储的自动化观测系统——被投放在了阿曼海和北阿拉伯海并运行至今.在2010年初,其中的自动化观测系统被升级到了新的深水光纤观测系统.这个海洋观测网络是在阿曼农业和渔业部的资助下,由美国的Lighthouse R&D公司设计、开发、安装和维护的.这2个观测系统作为一个整体已经连续工作了7年多的时间.所采集数据包括海流、温度、盐度、压力、溶解氧和浊度等.该海区是一个多水团的汇合区,波斯湾的高盐水和阿拉伯海的低盐水在这里汇合并蔓延南下到印度洋.对采集的数据研究表明,这一观测网络对研究该区域的物理和生物过程具有重要价值.在此,将系统介绍整个观测网络,并简要阐述已经完成和接近完成的4个研究主题:①对阿拉伯海有记载以来最强热带气旋“古怒”的海洋响应的研究;②阿曼海北部的季节性缺氧现象的季节及年际变化和成因分析;③深海声散射层的时空演变;④阿曼海和北阿拉伯海的高温高盐现象的成因.该观测网络采集的长期、连续的时间序列对这一地区的海洋动力研究、水文的季节性变化,以及气候的长期变化等研究都有很大帮助.此外,如果观测网络可以完成25年的设定观测目标,这将对验证和改进海洋环流模式和海气耦合模式具有重要意义.  相似文献   

19.
以流线、流面、汇点的概念为基础,对稳定流双井干扰和直线隔水边界附近涌水量理论公式进行对比分析,提出了二个虚拟界面,其中虚拟界面Ⅰ,运用流线、流面的性质,流线方程等给出证明;虚拟界面Ⅱ则通过半无限条形降落漏斗的分析,应用元流和总流的能量方程得到流量为零,流线为零的平面。在同样条件下,条形无限涌水量是半无限潜含水层涌水量的二倍。应用总流能量方程对三种情况水头损失的分析,解释了这种关系存在的合理性,得出虚拟界面Ⅱ,并以此得出该界面内的最大残余水头计算公式。将基坑降水运用虚拟界面简化为扇形,条形半无限含水层,从而实现单井预测,该方法应用到昊华水泥厂基坑降水中,预测效果理想。  相似文献   

20.
徐纪人  赵志新 《地球科学》2006,31(4):557-563
地球科学是以观测为基础的科学.当前, 如何克服城市化、工业化、现代化发展带来的噪音干扰, 提高观测的信噪比, 成为地球科学发展的重要课题之一.开展深井观测是解决地面噪音干扰的主要途径.近年来, 随着地球系统科学研究的深入以及解决环境、资源、防灾等科学问题的需求, 世界大陆、大洋科学钻探工程研究以及在钻孔深井内进行的地球物理长期观测得到飞速发展, 并取得了初步的观测研究成果.本文介绍了世界各国在深井长期观测方面的最新进展, 展示了中国大陆科学钻探工程在江苏东海现场开展深井地球物理综合观测的方案及其观测研究前景.东海深井长期观测站将成为中国第一个无地面干扰的综合性深井地震、地球物理实验观测站, 它是实现我国“入地”科学计划的重要基础, 将开创我国21世纪地球科学观测研究的崭新局面.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号