首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The historical tsunamigenic event of 21 July AD 365 destroyed several coastal locations in the Eastern Mediterranean region. The foremost destructive impacts were recorded in Crete and Egypt. The present study re-examines the effect of location, direction, height and time of travel of the tsunami towards the Egyptian coast. Evidently, this tsunamigenic event is related to an earthquake which is identified with a Hellenic Arc subduction-zone event of great magnitude, M > 8, as manifested by up to 9 m uplift in western Crete. The maximum run-up height distribution in the front of the Nile Delta was about 9.5 m in Alexandria, while those of the neighboring cities were 7.1 m, 4.9 m, and 1.9 m at Rashid, Damietta and El-Arish, respectively. Data obtained from this study is essential to evaluate the tsunami hazards along the Egyptian coast.  相似文献   

2.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   

3.
Elevated erosional notches and emergent marine deposits developed on limestone headlands along the Taormina coastline of northeastern Sicily testify to recent shoreline uplift. Although located at the southern prolongation of the Calabrian seismogenic belt, a zone of active extensional tectonics and rapid late Quaternary uplift, the study area lacks historical and instrumental evidence for significant earthquakes. A prominent notch level at an elevation of +4.5 and +5.0 m at Mazzaro and Capo Sant'Alessio, respectively, is dated by 14C assay of associated marine boring molluscs (Lithophaga) to be coincident with the 5000 yr BP deceleration of global eustatic rise, the mid-Holocene quasi-stillstand. These first radiometric dates of Holocene emergence along the northeastern Sicily coast indicate time-averaged uplift rates of 1.1 – 1.8 mm/yr. Well-defined erosional notches postdating the mid-Holocene quasistillstand, however, imply coastal uplift was not gradual but instead involved occasional abrupt crustal movements, probably the result of large paleoseismic earthquakes along the coastal-bounding normal faults. The results support a need for a re-evaluation of the earthquake potential of the Sicilian sector of the Apenninic seismogenic belt.  相似文献   

4.
Western Macedonia, Northern Greece, was a seismically quiescent region for one or more centuries, and was regarded as a nearly aseismic, rigid block inside a broad zone of distributed continental deformation and faulting, and a region of minimum seismic risk. Consequently, the May 13, 1995 destructive earthquake (M = 6.6) which hit this assumed aseismic zone was a surprise for scientists, government and population.However, historical and archaeoseismic evidence, as well as coastal change data indicate that the assumed aseismic region of Western Macedonia has been affected in the last 2,000 years by at least seven, and possibly nine destructive earthquakes. One of these earthquakes occurred in circa 1700, and probably had the same epicentre with, but higher magnitude than the 1995 shock.The earthquake in circa 1700 is deduced from historical data and is modelled on the base of a swarm of church repairs which is explained as post-seismic recovery of the broader Kozani area: except for certain well known cases of towns or areas in which religious privileges were granted, large scale repairs or reconstruction of churches during the Ottoman period were possible only after Sultan's permissions, usually following earthquakes and other calamities.It can hence be concluded that some, at least, of the apparently aseismic regions inside broad zones of distributed seismicity are hit by stronger shocks, but with longer (200 years or more) recurrence intervals than their adjacent zones. Consequently, the seismic risk of the apparently aseismic regions is certainly not low, especially since relatively long periods of seismic quiescence lead to constructions vulnerable to earthquakes.  相似文献   

5.
The nature of tsunami sources is reviewed, including source duration, displacement amplitudes, and areas and volumes of selected past earthquakes, slumps and slides that have or may have generated a tsunami. This review shows that the velocity of spreading of submarine slides and slumps (1–100 m/s) can be comparable to the long wavelength tsunami velocity (30–140 m/s for water depth 100<h<2000 m). In contrast, typical velocities of spreading dislocations during most earthquakes are one order of magnitude larger (2–3 km/s). Other significant differences between earthquake and slide and slump sources are that the balance of the total uplifted material in the case of slides is essentially zero, while for earthquakes it can be considerable, and that the vertical displacements for slides and slumps, per unit area of their horizontal projection, can be orders of magnitude larger than during earthquakes. This can result in high concentrations of the total change in the potential energy of fluid, above the source, over much smaller areas than during earthquakes.  相似文献   

6.
Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to bem=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude (M s =6.9–7.2). The Central American tsunamis having magnitudem>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.  相似文献   

7.
The slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes were estimated from tsunami and coastal geodetic data. These two earthquakes generated transoceanic tsunamis, and the waveforms were recorded around the Pacific Ocean. In addition, coseismic coastal uplift and subsidence were measured around the source areas. For the 27 February 2010 Maule earthquake, inversion of the tsunami waveforms recorded at nearby coastal tide gauge and Deep Ocean Assessment and Reporting of Tsunamis (DART) stations combined with coastal geodetic data suggest two asperities: a northern one beneath the coast of Constitucion and a southern one around the Arauco Peninsula. The total fault length is approximately 400 km with seismic moment of 1.7 × 1022 Nm (Mw 8.8). The offshore DART tsunami waveforms require fault slips beneath the coasts, but the exact locations are better estimated by coastal geodetic data. The 22 May 1960 earthquake produced very large, ~30 m, slip off Valdivia. Joint inversion of tsunami waveforms, at tide gauge stations in South America, with coastal geodetic and leveling data shows total fault length of ~800 km and seismic moment of 7.2 × 1022 Nm (Mw 9.2). The seismic moment estimated from tsunami or joint inversion is similar to previous estimates from geodetic data, but much smaller than the results from seismic data analysis.  相似文献   

8.
9.
采用球坐标系下非线性浅水波方程, 研究日本本州M9.0大地震引发的海啸对中国东南沿海的影响, 并计算了冲绳海槽构造带上3个不同段落可能发生潜在地震引发的海啸, 分析这些海啸与日本大海啸的浪高和走时关系. 结果表明, 日本地震海啸模拟结果与日本当地报道及中国东南沿海7个验潮站的报道结果相符. 冲绳海槽构造带中段可能发生的3次不同震级(M7.0, M7.5, M8.0)潜在地震引发的海啸到达中国东南沿海的时间比日本海啸提前约4个小时, 从震源区传播3个多小时即可到达华东沿海部分验潮站. 冲绳海槽M7.5潜在地震海啸在验潮站上计算的波高与日本海啸相当, 中冲绳海槽M8.0潜在地震海啸在大陈站的波高将超过0.9 m, 在坎门站波高将超过1.8 m. 北冲绳海槽的潜在地震海啸威胁主要集中在江苏盐城、 上海一带, 南冲绳海啸主要对台湾东北部和浙江沿海产生威胁. 本文对冲绳海槽构造带上潜在地震引发海啸的模拟结果, 可为中国东南沿海地区的防震减灾、 海啸预警提供有意义的参考.   相似文献   

10.
An M8.3 earthquake struck the southwestern part of the Hellenic Arc, near the Island of Crete, in AD 365, generating a tsunami that affected almost the entire eastern Mediterranean region. Taking into account that the time history of seismicity in this region is fairly complete for such earthquakes in the historical catalog, which can be dated as back as the 5th century B.C., there is no indication that this segment of plate boundary has been fully ruptured again. The seismic hazard associated with this part of the Hellenic Arc necessitates the evaluation of the rupture characteristics of this great event. The constraint of the faulting geometry was initially achieved by using information from seismicity, and the focal mechanisms of earthquakes that occurred during the instrumental period. A rupture model for this great earthquake is constructed by assuming an elastic medium and calculating the theoretical surface displacements for various fault models that are matched with the observed surface deformation gleaned from historical reports. The resulted fault model concerns thrust faulting with a rupture length of 160 km and a seismic moment of 5.7 × 1028 dyn·cm, an average slip of 8.9 m and a corresponding moment magnitude equal to 8.4, in excellent agreement with the macroseismic estimation. The absence of such events recurrence is an indication of the lack of complete seismic coupling that is common in subduction zones, which is in accordance with the back arc spreading of the Aegean microplate and with previous results showing low coupling for extensional strain of the upper plate.  相似文献   

11.
The magnitude (M w) 7.9 Wenchuan earthquake occurred on 12 May 2008 in the Longmen Shan region of China, the transition zone between the Tibetan Plateau and the Sichuan Basin, resulting in widespread damage throughout central and western China. The steep, high-relief eastern margin of the Tibetan Plateau has undergone rapid Cenozoic uplift and denudation accompanied by folding and thrusting, yet no large thrust earthquakes are known prior to the 2008 M w 7.9 Wenchuan earthquake. Field and excavation investigations reveal that a great historical earthquake occurred in the Sichuan region that ruptured a >200-km-long thrust fault within the Longmen Shan Thrust Belt, China, which also triggered the 2008 M w 7.9 Wenchuan earthquake. The average co-seismic slip amount produced by this historical earthquake is estimated to be 2–3 m, comparable with that caused by the 2008 Wenchuan earthquake. Paleoseismic and archaeological evidence and radiocarbon dating results show that the penultimate great earthquake occurred in the Sichuan region during the late Tang-Song Dynasty, between AD 800 and 1000, suggesting a recurrence interval of ~1,000–1,200 years for Wenchuan-magnitude (M = ~8) earthquakes in the late Holocene within the Longmen Shan Thrust Belt. This finding is in contrast with previous estimates of 2,000–10,000 years for the recurrence interval of large earthquakes within the Longmen Shan Thrust Belt, as obtained from long-term slip rates based on the Global Positioning System and geological data, thereby necessitating substantial modifications to existing seismic-hazard models for the densely populated region at the eastern marginal zone of the Tibetan Plateau.  相似文献   

12.
The 1994 Shikotan earthquake tsunamis   总被引:1,自引:0,他引:1  
The 1994 Shikotan earthquake was one of the greatest earthquakes in recent years with a magnitude ofM s 8.0. A tsunami survey was conducted by Russian and U.S. geophysicists from October 16–30, 1994, less than two weeks after the earthquake. The survey results and a numerical hindcast simulation are reported. Tsunami focusing effect at locations supposedly sheltered by the island chain is discussed. Based on the obtained data, tsunamis which attacked Shikotan Island are characterized as long waves (the order of 10–20 min wave period) with a positive leading wave. Possible consequences of the positive leading wave form are discussed in relation to the observed minimal destruction of beach vegetation and relatively small transport of marine sediment onto the shore. The high-quality tide-gage record in Malokurilskaya Bay indicates the occurrence of a 53 cm subsidence at the site.  相似文献   

13.
A field survey of the June 3, 1994 East Java earthquake tsunami was conducted within three weeks, and the distributions of the seismic intensities, tsunami heights, and human and house damages were surveyed. The seismic intensities on the south coasts of Java and Bali Islands were small for an earthquake with magnitudeM 7.6. The earthquake caused no land damage. About 40 minutes after the main shock, a huge tsunami attacked the coasts, several villages in East Java Province were damaged severely, and 223 persons perished. At Pancer Village about 70 percent of the houses were swept away and 121 persons were killed by the tsunami. The relationship between tsunami heights and distances from the source shows that the Hatori's tsunami magnitude wasm=3, which seems to be larger for the earthquake magnitude. But we should not consider this an extraordinary event because it was pointed out byHatori (1994) that the magnitudes of tsunamis in the Indonesia-Philippine region generally exceed 1–2 grade larger than those of other regions.  相似文献   

14.
By conducting a historical review of this large seismic event in the Mediterranean, it has been possible to identify both the epicentral area and the area in which its effects were principally felt. Ever since the nineteenth century, the seismological tradition has offered a variety of partial interpretations of the earthquake, depending on whether the main sources used were Arabic, Greek or Latin texts. Our systematic research has involved the analysis not only of Arab, Byzantine and Italian chronicle sources, but also and in particular of a large number of never previously used official and public authority documents, preserved in Venice in the State Archive, in the Marciana National Library and in the Library of the Museo Civico Correr. As a result, it has been possible to establish not only chronological parameters for the earthquake (they were previously uncertain) but also its overall effects (epicentral area in Crete, Imax XI MCS). Sources containing information in 41 affected localities and areas were identified. The earthquake also gave rise to a large tsunami, which scholars have seen as having certain interesting elements in common with that of 21 July 365, whose epicentre was also in Crete. As regards methodology, this research made it clear that knowledge of large historical earthquakes in the Mediterranean is dependent upon developing specialised research and going beyond the territorial limits of current national catalogues.  相似文献   

15.
Field Survey of the 27 February 2010 Chile Tsunami   总被引:1,自引:0,他引:1  
On 27 February 2010, a magnitude M w?=?8.8 earthquake occurred off the coast of Chile??s Maule region causing substantial damage and loss of life. Ancestral tsunami knowledge from the 1960 event combined with education and evacuation exercises prompted most coastal residents to spontaneously evacuate after the earthquake. Many of the tsunami victims were tourists in coastal campgrounds. The international tsunami survey team (ITST) was deployed within days of the event and surveyed 800?km of coastline from Quintero to Mehuín and the Pacific Islands of Santa María, Mocha, Juan Fernández Archipelago, and Rapa Nui (Easter). The collected survey data include more than 400 tsunami flow depth, runup and coastal uplift measurements. The tsunami peaked with a localized runup of 29?m on a coastal bluff at Constitución. The observed runup distributions exhibit significant variations on local and regional scales. Observations from the 2010 and 1960 Chile tsunamis are compared.  相似文献   

16.
The 2010 Mentawai earthquake (magnitude 7.7) generated a destructive tsunami that caused more than 500 casualties in the Mentawai Islands, west of Sumatra, Indonesia. Seismological analyses indicate that this earthquake was an unusual “tsunami earthquake,” which produces much larger tsunamis than expected from the seismic magnitude. We carried out a field survey to measure tsunami heights and inundation distances, an inversion of tsunami waveforms to estimate the slip distribution on the fault, and inundation modeling to compare the measured and simulated tsunami heights. The measured tsunami heights at eight locations on the west coasts of North and South Pagai Island ranged from 2.5 to 9.3 m, but were mostly in the 4–7 m range. At three villages, the tsunami inundation extended more than 300 m. Interviews of local residents indicated that the earthquake ground shaking was less intense than during previous large earthquakes and did not cause any damage. Inversion of tsunami waveforms recorded at nine coastal tide gauges, a nearby GPS buoy, and a DART station indicated a large slip (maximum 6.1 m) on a shallower part of the fault near the trench axis, a distribution similar to other tsunami earthquakes. The total seismic moment estimated from tsunami waveform inversion was 1.0 × 1021 Nm, which corresponded to Mw 7.9. Computed coastal tsunami heights from this tsunami source model using linear equations are similar to the measured tsunami heights. The inundation heights computed by using detailed bathymetry and topography data and nonlinear equations including inundation were smaller than the measured ones. This may have been partly due to the limited resolution and accuracy of publically available bathymetry and topography data. One-dimensional run-up computations using our surveyed topography profiles showed that the computed heights were roughly similar to the measured ones.  相似文献   

17.
Tsunami deposits provide a basis for reconstructing Holocene histories of great earthquakes and tsunamis on the Pacific Coast of southwest Japan. The deposits have been found in the past 15 years at lakes, lagoons, outcrops, and archaeological excavations. The inferred tsunami histories span 3000 years for the Nankai and Suruga Troughs and nearly 10,000 years for the Sagami Trough. The inferred histories contain recurrence intervals of variable length. The shortest of these —100–200 years for the Nankai Trough, 150–300 years for the Sagami Trough — resemble those known from written history of the past 1000–1500 years. Longer intervals inferred from the tsunami deposits probably reflect variability in rupture mode, incompleteness of geologic records, and insufficient research. The region's tsunami history could be clarified by improving the geologic distinction between tsunami and storm, dating the inferred tsunamis more accurately and precisely, and using the deposits to help quantify the source areas and sizes of the parent earthquakes.  相似文献   

18.
Tsunami created by spreading submarine slides and slumps with spatially variable final uplift are investigated in the near-field using a kinematic model. It is shown that for velocities of spreading comparable to and smaller than the long period tsunami velocity (g is the acceleration due to gravity and h is the ocean depth), the models with spatially uniform final uplift of the accumulation and depletion zones provide good approximation for the tsunami amplitudes in the near-field. For spreading velocities 2–5 times greater than cT, and for applications that use wavelengths of the order of the source dimensions, the spatial variability of the final uplift has to be considered in estimation of the high-frequency tsunami amplitudes in the near-field.  相似文献   

19.
A temporal and spatial change of codaQ –1 associated with the occurrence of the North Palm Springs earthquake of July 8, 1986 was studied by using 242 small local earthquakes in the vicinity of the mainshock. We found that the codaQ –1 of earthquakes which occurred before the mainshock was significantly higher than that of the aftershocks in the mainshock area while the codaQ –1 for the surrounding area remained almost constant throughout 1986. CodaQ –1 was determined separately for the lapse time windows of 10 to 20 sec. and 15 to 40 sec. for the period from 1981 to 1987. The result for the time window 10 to 20 sec. showed a peak in codaQ –1 before the time of mainshock at all frequencies. The peak appeared earlier at lower frequencies. There was no significant change in codaQ –1 for the time window 15 to 40 sec., probably because the change was restricted to a small area.  相似文献   

20.
On December 12, 1992 a large earthquake (M s 7.5) occurred just north of Flores Island, Indonesia which, along with the tsunami it generated, killed more than 2,000 people. In this study, teleseismicP andSH waves, as well asPP waves from distances up to 123°, are inverted for the orientations and time histories of multiple point sources. By repeating the inversion for reasonable values of depth, time separation and spatial separation, a 2-fault model is developed. Next, the vertical deformation of the seafloor is estimated from this fault model. Using a detailed bathymetric model, linear and nonlinear tsunami propagation models are tested. The data consist of a single tide gauge record at Palopo (650 km to the north), as well as tsunami runup height measurements from Flores Island and nearby islands. Assuming a tsunami runup amplification factor of two, the two-fault model explains the tide gauge record and the tsunami runup heights on most of Flores Island. It cannot, however, explain the large tsunami runup heights observed near Leworahang (on Hading Bay) and Riangkroko (on the northeast peninsula). Massive coastal slumping was observed at both of these locations. A final model, which in addition to the two faults, includes point sources of large vertical displacement at these two locations explains the observations quite well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号