共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
高光谱遥感图像的监督分类 总被引:1,自引:0,他引:1
图像分类是高光谱遥感图像分析与应用的重要手段。总结了目前用于高光谱图像监督分类的主要方法,包括最小距离法、最大似然法、神经元网络法和支持向量机法,分析了上述方法的特点,并探讨了高光谱遥感图像分类方法的发展趋势。 相似文献
3.
4.
5.
基于边缘的多光谱遥感图像分割方法 总被引:16,自引:0,他引:16
从Marr视觉计算理论和Tobler地学第一定律出发,提出了基于边缘的多光谱遥感图像分割方法.在基于边缘的多光谱遥感图像分割方法中,由边缘检测、边缘综合、边缘生长、区域标号等环节组成.该遥感图像分割方法在可视化开发平台Delphi中予以编程实现.将之应用于日本熊本市(Kumamoto)的Quickbird多光谱遥感图像中,并与多种遥感分割算法进行了比较:(1)从多光谱遥感图像各波段亮度信息利用的程度上看,提出的遥感图像分割方法能充分利用多波段亮度信息;(2)从遥感图像分割结果上看,由于分别对不同的波段进行边缘检测,并在此基础上进行边缘综合、边缘生长,遥感图像中的细节特征得到了充分体现,遥感图像分割效果更理想;(3)从计算复杂度和计算效率上看,基于边缘的多光谱遥感图像分割法较其他分割方法有一定的优势. 相似文献
6.
基于K-L变换的多光谱遥感图像检索方法研究 总被引:1,自引:0,他引:1
在遥感图像检索中,光谱特征的应用最为广泛。本文研究了基于光谱特征进行遥感图像检索的方法。针对目前应用越来越广泛的多光谱、高光谱遥感图像波段多的特点,提出了基于K-L变换的检索方法,将多维图像降维处理,在此基础上提取遥感图像的光谱特征,通过检索图像与目标图像的光谱特征对比实现多光谱遥感图像的检索,并通过实验验证了本文方法的有效性。 相似文献
7.
针对目前深度神经网络训练耗时长、浅层神经网络多为易崩溃三层感知器(BP)的现状,提出一种基于集成全连接多层感知器(MLP)的多光谱图像快速分类方法。实验对基于焦作地区Landsat8多光谱影像,使用半随机网格搜索优化等方法搜索超参数组合,构建4种MLP分类器。实验发现位置信息与地物类别无关,地物的样本量增加时分类器会对其更敏感。比较各分类器对Landsat8多光谱影像的分类结果得知集成分类器更优。 相似文献
8.
9.
10.
11.
12.
土地利用/覆被(LUC)可为土地资源领域相关研究提供基础数据.本文构建了面向对象的LUC分类方法,并以沿海特殊土地类型区连云港市为例,应用Landsat 8影像开展了实证研究。结果表明:①总体分类精度达到85.06%,总体Kappa系数为0.83,超过了0.7的最低允许判别精度;②该方法可以有效地减少研究区因南北部区域耕地植被覆盖度不同导致的错分现象,并可以用于盐田与滩涂信息的提取工作;③该方法既可为研究区土地利用相关研究提供符合精度要求的数据.也可为其他沿海地区进行土地利用/覆被信息提取工作提供参考和借鉴。 相似文献
13.
Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery 总被引:3,自引:0,他引:3
Hossein Saadat Jan AdamowskiRobert Bonnell Forood SharifiMohammad Namdar Sasan Ale-Ebrahim 《ISPRS Journal of Photogrammetry and Remote Sensing》2011,66(5):608-619
Accelerated soil erosion, high sediment yields, floods and debris flow are serious problems in many areas of Iran, and in particular in the Golestan dam watershed, which is the area that was investigated in this study. Accurate land use and land cover (LULC) maps can be effective tools to help soil erosion control efforts. The principal objective of this research was to propose a new protocol for LULC classification for large areas based on readily available ancillary information and analysis of three single date Landsat ETM+ images, and to demonstrate that successful mapping depends on more than just analysis of reflectance values. In this research, it was found that incorporating climatic and topographic conditions helped delineate what was otherwise overlapping information. This study determined that a late summer Landsat ETM+ image yields the best results with an overall accuracy of 95%, while a spring image yields the poorest accuracy (82%). A summer image yields an intermediate accuracy of 92%. In future studies where funding is limited to obtaining one image, late summer images would be most suitable for LULC mapping. The analysis as presented in this paper could also be done with satellite images taken at different times of the season. It may be, particularly for other climatic zones, that there is a better time of season for image acquisition that would present more information. 相似文献
14.
西北旱区遥感影像分类的支持向量机法 总被引:1,自引:0,他引:1
针对较大范围、不同时相、不同气候和地貌类型的遥感影像的土地利用现状分类问题,提出了一种结合标准植被指数和纹理特征的支持向量机法。此方法改进了陕西延安、甘肃嘉峪关和青海果洛的遥感影像分类,有效地解决了最大似然法和BP神经网络法的缺陷造成的分类精度不高的问题。分类结果表明:与最大似然法和BP神经网络法相比,结合标准植被指数和纹理特征的支持向量机法的分类总精度最高(97.75%),Kappa系数为0.9691。该方法可为西北旱区遥感影像解译和土地资源可持续发展战略提供方法支撑。 相似文献
15.
16.
This paper presents a land use and land cover (LULC) classification approach that accounts landscape heterogeneity. We addressed this challenge by subdividing the study area into more homogeneous segments using several biophysical and socio-economic factors as well as spectral information. This was followed by unsupervised clustering within each homogeneous segment and supervised class assignment. Two classification schemes differing in their level of detail were successfully applied to four landscape types of distinct LULC composition. The resulting LULC map fulfills two major requirements: (1) differentiation and identification of several LULC classes that are of interest at the local, regional, and national scales, and (2) high accuracy of classification. The approach overcomes commonly encountered difficulties of classifying second-level classes in large and heterogeneous landscapes. The output of the study responds to the need for comprehensive LULC data to support ecosystem assessment, policy formulation, and decision-making towards sustainable land resources management. 相似文献
17.
Land use and land cover classification is an important application of remote-sensing images. The performances of most classification models are largely limited by the incompleteness of the calibration set and the complexity of spectral features. It is difficult for models to realize continuous learning when the study area is transferred or enlarged. This paper proposed an adaptive unimodal subclass decomposition (AUSD) learning system, which comprises two-level iterative learning controls: The inner loop separates each class into several unimodal Gaussian subclasses; the outer loop utilizes transfer learning to extend the model to adapt to supplementary calibration set collected from enlarged study areas. The proposed model can be efficiently adjusted according to the variability of spectral signatures caused by the increasingly high-resolution imagery. The classification result can be obtained using the Gaussian mixture model by Bayesian decision theory. This AUSD learning system was validated using simulated data with the Gaussian distribution and multi-area SPOT-5 high-resolution images with 2.5-m resolution. The experimental results on numerical data demonstrated the ability of continuous learning. The proposed method achieved an overall accuracy of over 90% in all the experiments, validating the effectiveness as well as its superiority over several widely used classification methods. 相似文献
18.
卷积神经网络在高分遥感影像分类中的应用 总被引:8,自引:0,他引:8
针对目前应用于高分辨率遥感影像分类的常用算法,其精度已无法满足大数据环境下的分类要求的问题,该文提出了卷积神经网络分类算法。卷积神经网络模型降低了因图像平移、比例缩放、倾斜或者共他形式的变形而引起的误差。在大数据环境下,采用卷积神经网络算法对高分辨率遥感影像进行分类,避免了特征提取和分类过程中数据重建的复杂度,提高了分类精度。通过实验比对分析,证明了卷积神经网络在高分辨率遥感影像分类中的可行性及精度优势,对遥感图像处理领域等相关工作提供了参考价值。 相似文献
19.
多时相ASAR数据的地表覆盖分类研究 总被引:1,自引:1,他引:1
本文选择了位于念青唐古拉山脉西段,覆盖范围大约100×100km2的区域,使用四个不同时期内的ASAR图像数据进行地表覆盖分类的研究。研究结果表明,虽然同种类型的地物在同一景雷达图像上的后向散射系数存在一定的差异,但是其后向散射系数随时间的变化规律却是一致的。根据地物后向散射系数的这种时相特征,我们对研究区的地表覆盖进行了分类,结果显示使用该方法能有效地区分草原、草甸、裸岩、水体、终年积雪等。 相似文献
20.
随着遥感技术的发展,同一区域的多源遥感影像数据越来越丰富。以哈大齐为例,利用ETM+和SPOT-5数据探讨不同遥感信息融合在土地利用过程中的处理方法,比较不同融合算法在土地分类中的差异,并进行定性和定量比较。为有关部门进行土地规划、管理提供科学依据有着十分重要的意义。 相似文献