首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A suite of 18 oils from the Barrow Island oilfield, Australia, and a non-biodegraded reference oil have been analysed compositionally in order to detail the effect of minor to moderate biodegradation on C5 to C9 hydrocarbons. Carbon isotopic data for individual low molecular weight hydrocarbons were also obtained for six of the oils. The Barrow Island oils came from different production wells, reservoir horizons, and compartments, but have a common source (the Upper Jurassic Dingo Claystone Formation), with some organo-facies differences. Hydrocarbon ratios based on hopanes, steranes, alkylnaphthalenes and alkylphenanthrenes indicate thermal maturities of about 0.8% Rc for most of the oils. The co-occurrence in all the oils of relatively high amounts of 25-norhopanes with C5 to C9 hydrocarbons, aromatic hydrocarbons and cyclic alkanes implies that the oils are the result of multiple charging, with a heavily biodegraded charge being overprinted by fresher and more pristine oil. The later oil charge was itself variably biodegraded, leading to significant compositional variations across the oilfield, which help delineate compartmentalisation. Biodegradation resulted in strong depletion of n-alkanes (>95%) from most of the oils. Benzene and toluene were partially or completely removed from the Barrow Island oils by water washing. However, hydrocarbons with lower water solubility were either not affected by water washing, or water washing had only a minor effect. There are three main controls on the susceptibility to biodegradation of cyclic, branched and aromatic low molecular weight hydrocarbons: carbon skeleton, degree of alkylation, and position of alkylation. Firstly, ring preference ratios at C6 and C7 show that isoalkanes are retained preferentially relative to alkylcyclohexanes, and to some extent alkylcyclopentanes. Dimethylpentanes are substantially more resistant to biodegradation than most dimethylcyclopentanes, but methylhexanes are depleted faster than methylpentanes and dimethylcyclopentanes. For C8 and C9 hydrocarbons, alkylcyclohexanes are more resistant to biodegradation than linear alkanes. Secondly, there is a trend of lower susceptibility to biodegradation with greater alkyl substitution for isoalkanes, alkylcyclohexanes, alkylcyclopentanes and alkylbenzenes. Thirdly, the position of alkylation has a strong control, with adjacent methyl groups reducing the susceptibility of an isomer to biodegradation. 1,2,3-Trimethylbenzene is the most resistant of the C3 alkylbenzene isomers during moderate biodegradation. 2-Methylalkanes are the most susceptible branched alkanes to biodegradation, 3-methylalkanes are the most resistant and 4-methylalkanes have intermediate resistance. Therefore, terminal methyl groups are more prone to bacterial attack compared to mid-chain isomers, and C3 carbon chains are more readily utilised than C2 carbon chains. 1,1-Dimethylcyclopentane and 1,1-dimethylcyclohexane are the most resistant of the alkylcyclohexanes and alkylcyclopentanes to biodegradation. The straight-chained and branched C5–C9 alkanes are isotopically light (depleted in 13C) relative to cycloalkanes and aromatic hydrocarbons. The effects of biodegradation consistently lead to enrichment in 13C for each remaining hydrocarbon, due to preferential removal of 12C. Differences in the rates of biodegradation of low molecular weight hydrocarbons shown by compositional data are also reflected in the level of enrichment in 13C. The carbon isotopic effects of biodegradation show a decreasing level of isotopic enrichments in 13C with increasing molecular weight. This suggests that the kinetic isotope effect associated with biodegradation is site-specific and often related to a terminal carbon, where its impact on the isotopic composition becomes progressively ‘diluted’ with increasing carbon number.  相似文献   

2.
Lupanoid hydrocarbons are known to occur in several petroleum systems, and lupane (C30) has recently been confirmed to exist in several crude oils. In contrast, norlupanes (C29) and bisnorlupanes (C28) are rarely observed in oil. All of these compounds are considered to derive from natural products of angiosperms, and numerous examples of their functionalized analogs are known. The occurrence of C28 and C29 lupanoids in biochemical and geochemical systems is reviewed here, and the presence and origin of their hydrocarbon analogs in crude oils are examined in detail. Although direct biochemical precursors for the lupane of crude oil are evident, such precursors for norlupane and bisnorlupane are not obvious. Nor is it clear if the C28 and C29 analogs are diagenetic descendants from the lupane structure. Adding additional confusion is the occurrence of these analogs in oils which show numerous indications of post-source molecular addition during migration and entrapment, making it unclear if they originate from a conventional source rock or from carrier or seal rock. Despite these uncertainties, there is extensive potential – some of which has already been realized – to use these compounds in oil–oil and oil-source rock correlations, particularly in instances where extensive biodegradation has occurred. Deconvolution of the time(s) of introduction of norlupane and bisnorlupane into the fluid – as well as various other hydrocarbons, including olefins – also provides great potential as a tool for mapping the migration history of an oil.  相似文献   

3.
A large suite of natural gases (93) from the North West Shelf and Gippsland and Otway Basins in Australia have been characterised chemically and isotopically resulting in the elucidation of two types of gases. About 26% of these gases have anomalous stable carbon isotope compositions in the C1–C4 hydrocarbons and CO2 components, and are interpreted to have a secondary biogenic history. The characteristics include unusually large isotopic separations between successive n-alkane homologues (up to +29‰ PDB) and isotopically heavy CO2 (up to +19.5‰ PDB). Irrespective of geographic location, these anomalous gases are from the shallower accumulations (600–1700 m) where temperatures are lower than 75°C. The secondary biogenic gases are readily distinguishable from thermogenic gases (74% of this sample suite), which should assist in the appraisal of hydrocarbons during exploration where hydrocarbon accumulations are under 2000 m. While dissolution effects may have contributed to the high 13C enrichment of the CO2 component in the secondary biogenic gases, the primary signature of this CO2 is attributed to biochemical fractionation associated with anaerobic degradation and methanogenesis. Correlation between biodegraded oils and biodegraded “dry” gas supports the concept that gas is formed from the bacterial destruction of oil, resulting in “secondary biogenic gas”. Furthermore, the prominence of methanogenic CO2 in these types of accumulations along with some isotopically-depleted methane provides evidence that the processes of methanogenesis and oil biodegradation are linked. It is further proposed that biodegradation of oil proceeds via a complex anaerobic coupling that is integral to and supports methanogenesis.  相似文献   

4.
A significant quantity of hydrocarbons (including alkanes) is occluded in the skeleton of the asphaltene molecule. The hydrocarbons are probably remnants of the “original oil” which had been retained within the asphaltene matrix and protected from the secondary alteration processes that occurred subsequently in the oil reservoirs. In this work we report that oxidation of asphaltenes by stirring with 30%H2O2–HAc or NaIO4–NaH2PO4 can release nC7-soluble oxidized products, including the occluded hydrocarbons. Characterization of the nC7-soluble fractions of oxidized products can be applied to highlight some geochemical problems, such as in studies of oil–oil correlation, oil–source correlation and secondary alterations of oil reservoirs. It will be especially useful to recover the original geochemical information of some oil reservoirs heavily degraded by post-depositional processes.  相似文献   

5.
Insights into oil cracking based on laboratory experiments   总被引:3,自引:0,他引:3  
The objectives of this pyrolysis investigation were to determine changes in (1) oil composition, (2) gas composition and (3) gas carbon isotope ratios and to compare these results with hydrocarbons in reservoirs. Laboratory cracking of a saturate-rich Devonian oil by confined, dry pyrolysis was performed at T=350–450 °C, P=650 bars and times ranging from 24 h to 33 days. Increasing thermal stress results in the C15+ hydrocarbon fraction cracking to form C6–14 and C1–5 hydrocarbons and pyrobitumen. The C6–14 fraction continues to crack to C1–5 gases plus pyrobitumen at higher temperatures and prolonged heating time and the δ 13Cethaneδ13Cpropane difference becomes greater as oil cracking progresses. There is considerable overlap in product generation and product cracking. Oil cracking products accumulate either because the rate of generation of any product is greater than the rate of removal by cracking of that product or because the product is a stable end member under the experimental conditions. Oil cracking products decrease when the amount of product generated from a reactant is less than the amount of product cracked. If pyrolysis gas compositions are representative of gases generated from oil cracking in nature, then understanding the processes that alter natural gas composition is critical.  相似文献   

6.
Compound-specific isotope analysis has become an important tool in environmental studies and is an especially powerful way to evaluate biodegradation of hydrocarbons. Here, carbon isotope ratios of light hydrocarbons were used to characterise in-reservoir biodegradation in the Gullfaks oil field, offshore Norway. Increasing biodegradation, as characterised, for example, by increasing concentration ratios of Pr/n-C17 and Ph/n-C18, and decreasing concentrations of individual light hydrocarbons were correlated to 13C-enrichment of the light hydrocarbons. The δ13C values of C4 to C9n-alkanes increase by 7-3‰ within the six oil samples from the Brent Group of the Gullfaks oil field, slight changes (1-3‰) being observed for several branched alkanes and benzene, whereas no change (<1‰) in δ13C occurs for cyclohexane, methylcyclohexane, and toluene. Application of the Rayleigh equation demonstrated high to fair correlation of concentration and isotope data of i- and n-pentane, n-hexane, and n-heptane, documenting that biodegradation in reservoirs can be described by the Rayleigh model. Using the appropriate isotope fractionation factor of n-hexane, derived from laboratory experiments, quantification of the loss of this petroleum constituent due to biodegradation is possible. Toluene, which is known to be highly susceptible to biodegradation, is not degraded within the Gullfaks oil field, implying that the local microbial community exhibits rather pronounced substrate specificities. The evaluation of combined molecular and isotopic data expands our understanding of the anaerobic degradation processes within this oil field and provides insight into the degradative capabilities of the microorganisms. Additionally, isotope analysis of unbiodegraded to slightly biodegraded crude oils from several oil fields surrounding Gullfaks illustrates the heterogeneity in isotopic composition of the light hydrocarbons due to source effects. This indicates that both source and also maturity effects have to be well constrained when using compound-specific isotope analysis for the assessment of biodegradation.  相似文献   

7.
Three compositionally distinctive groups of oils identified in central Montana by biomarker analyses are also recognized by the unique compositions of their light hydrocarbon (gasoline range) fraction. The majority of oils produced from Paleozoic pools (Pennsylvanian Tyler–Amsden interval) group into one broad category based on the distribution of C20–C40 biomarkers. These oils not only have the lowest Paraffin Indices and relative concentrations of normal heptane, but are readily distinguishable from the other compositional groups by using selected “Mango” parameters. However, the biomarker-based subdivision of this group into at least two sub-families is not reflected in the gasoline range fraction, suggesting little effect of source rock host lithology on the distribution of C5–C8 hydrocarbons. Oils occurring predominantly in Jurassic–Cretaceous reservoirs display different biomarker and gasoline range characteristics, including Paraffin Indices, K1 parameter and relative concentrations of C7 compounds, and are classified in two separate compositional categories. In contrast to oils from the Tyler–Amsden interval, the oils produced from the Mesozoic strata are amongst the most mature oils in the study area. The unique biomarker/light hydrocarbon signatures are likely due to different source organic matter. Secondary alteration of oil due to biodegradation and migration, although recognized, appears less significant. The results indicate the overall usefulness of gasoline range compositions in delineating compositional affinities of crude oils in central Montana, clearly suggesting that the oils found in Paleozoic and Mesozoic reservoirs belong to different petroleum systems.  相似文献   

8.
Mathematical models of hydrocarbon formation can be used to simulate the natural evolution of different types of organic matter and to make an overall calculation of the amounts of oil and/or gas produced during this evolution. However, such models do not provide any information on the composition of the hydrocarbons formed or on how they evolve during catagenesis.From the kinetic standpoint, the composition of the hydrocarbons formed can be considered to result from the effect of “primary cracking” reactions having a direct effect on kerogen during its evolution as well as from the effect of “secondary cracking” acting on the hydrocarbons formed.This report gives experimental results concerning the “primary cracking” of Types II and III kerogens and their modelling. For this, the hydrocarbons produced have been grouped into four classes (C1, C2–C5, C6–C15 and C15+). Experimental data corresponding to these different classes were obtained by the pyrolysis of kerogens with temperature programming of 4°C/min with continuous analysis, during heating, of the amount of hydrocarbons corresponding to each of these classes.The kinetic parameters of the model were optimized on the basis of the results obtained. This model represents the first step in the creation of a more sophisticated mathematical model to be capable of simulating the formation of different hydrocarbon classes during the thermal history of sediments. The second step being the adjustment of the kinetic parameters of “secondary cracking”.  相似文献   

9.
The biodegradation of crude oil by microorganisms from well Luo-801, China, was examined in cultures grown under conditions that promoted either methanogenesis or sulfate reduction, at 35 °C and 55 °C. Headspace gas and oil compositions were characterized at 180 d and 540 d. Alkylphenanthrenes are relatively recalcitrant to bacterial attack and the biodegradation of these compounds appeared to be insignificant after 180 d under both conditions, but is evident after 540 d. The depletion of alkylphenanthrenes was monitored through evaluation of the ratio of alkylphenanthrenes to the most bioresistant, analyzed component (C28 20R triaromatic steroid hydrocarbon) and isomer susceptibility also was evaluated by relative abundance comparison within the compound class. The influence of growth temperature varied. Only slight differences in alkylphenanthrene concentrations were observed after 180 d whereas the greater degrees of biodegradation were observed at 35 °C in the methanogenic culture and at 55 °C in the sulfate reducing culture. Overall, higher biodegradation rates occur under sulfate reducing condition, which is consistent with the conclusion that methanogens are generally less able to compete for substrates than sulfate reducers. The biodegradation susceptibility of alkylphenanthrenes decreases with increasing degree of alkylation, i.e., phenanthrene (P) and methylphenanthrenes (MPs) were more easily biodegradable than C2-alkylphenanthrenes (C2-Ps) and C3-alkylphenanthrenes (C3-Ps). Biodegradation selectivity for specific homologues is not striking for the limited time duration of the experiments. However, 3-MP seems slightly more vulnerable than other methylphenanthrene isomers and 1,7-DMP has slightly higher ability to resist biodegradation than the other C2-P isomers. The commonly used thermal maturity parameters derived from methylphenanthrene isomer ratios are altered insignificantly by biodegradation and remain valid for geochemical assessment. This information should be useful for assessing the limits of in situ crude oil biodegradation.  相似文献   

10.
Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much information regarding the genetic origin and alteration of crude oils. But secondary alterations—especially biodegradation—have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6–C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6–C7 cycloalkanes. For branched C6–C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6–C7 LHs. There is a particular case: although 2,2,3-trimethylbutane has a relative higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2-Dimethylpentane is the most resistant to biodegradation in branched C6–C7 alkanes. Furthermore, the 2-methylpentane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango’s LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the “Biodegraded” zone. When the heptane value is 0–21 and the isoheptane value is 0–2.6, the crude oil in Dawanqi Oilfield is defined as the “Biodegraded” zone.  相似文献   

11.
We have investigated the distributions of alkylcarbazoles in a series of crude oils with different biodegradation extents, in combination with biomarker parameters, stable carbon isotopic ratios and viscosities. The analyses showed that slight biodegradation has little effect on alkylcarbazoles. The concentrations of C0-, C1-, and C2-carbazoles seem to display a slight decrease with biodegradation through the moderately biodegraded stage, and an abrupt decrease to the heavily biodegraded stage. The relative concentrations of C0-, C1-, and C2-carbazoles do not show any apparent change in the non-heavily biodegraded stages, but through non-heavily biodegraded to heavily biodegraded stages, the percentages of C0- and C1-carbazoles decrease, and those of C2-carbazoles increase significantly, which may indicate that C2-carbazoles are more resistant to biodegradation than lower homologous species. As to C2-carbazole isomers, the relative concentrations of the pyrrolic N-H-shielded, pyrrolic N−H partially shielded and pyrrolic N-H-exposed isomers do not show any obvious variation in the non-heavily biodegraded oil, but there is an abrupt change through the mid-biodegraded stage to the heavily biodegraded stage. This project was financially supported by the Youth Knowledge-Innovation Foundation of CNPC (No. 00Z1304).  相似文献   

12.
The removal of petroleum and petroleum-based products from the environment is of great importance. The objectives of this study were to investigate the most suitable physiological conditions and the effects of additional carbon, nitrogen and surfactant sources on petroleum biodegradation by Klebsiella pneumoniae ATCC13883 isolated from drilling fluid and to evaluate petroleum biodegradation with detailed hydrocarbon analysis by GC–MS. The results indicated that the highest biodegradation rate of 66.5% for K. pneumoniae was obtained under the conditions of pH 7, petroleum concentration 1% (v/v) and 7-day incubation at 150 rpm and 25 °C, proving to be the most effective physical conditions for petroleum biodegradation in this present study. Additional sources such as Triton X: 100, glucose and yeast extract significantly enhanced the petroleum biodegradation of K. pneumoniae to 68, 71 and 72.5%, respectively. In the last stage of this study, biodegradation rates were above 90% for hydrocarbons ranging from C10 and C20, above 70% for hydrocarbons ranging from C21 and C22 and above 40% for hydrocarbons ranging from C31 and C32. In conclusion, oil field adapted K. pneumoniae could efficiently degrade short-, medium- and long-chain alkanes in petroleum and thus is a potential source for advanced petroleum treatment.  相似文献   

13.
Hydrocarbon mixtures too complex to resolve by traditional capillary gas chromatography display gas chromatograms with dramatically rising baselines or “humps” of coeluting compounds that are termed unresolved complex mixtures (UCMs). Because the constituents of UCMs are not ordinarily identified, a large amount of geochemical information is never explored. Gas chromatograms of saturated/unsaturated hydrocarbons extracted from Late Archean argillites and greywackes of the southern Abitibi Province of Ontario, Canada contain UCMs with different appearances or “topologies” relating to the intensity and retention time of the compounds comprising the UCMs. These topologies appear to have some level of stratigraphic organization, such that samples collected at any stratigraphic formation collectively are dominated by UCMs that either elute early- (within a window of C15–C20 n-alkanes), early- to mid- (C15–C30 n-alkanes), or have a broad UCM that extends through the entire retention time of the sample (from C15–C42 n-alkanes). Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC–MS) was used to resolve the constituents forming these various UCMs. Early- to mid-eluting UCMs are dominated by configurational isomers of alkyl-substituted and non-substituted polycyclic compounds that contain up to six rings. Late eluting UCMs are composed of C36–C40 mono-, bi-, and tricyclic archaeal isoprenoid diastereomers. Broad UCMs spanning the retention time of compound elution contain nearly the same compounds observed in the early-, mid-, and late-retention time UCMs. Although the origin of the polycyclic compounds is unclear, the variations in the UCM topology appear to depend on the concentration of initial compound classes that have the potential to become isomerized. Isomerization of these constituents may have resulted from hydrothermal alteration of organic matter.  相似文献   

14.
Although the effects of biodegradation on the composition and physical properties of crude oil have been well studied, effects of in-reservoir petroleum biodegradation on molecular and isotopic compositions of crude oils are not yet clearly understood. The Alberta Basin, in western Canada, is one of the world’s largest petroleum accumulations and constitutes an ideal example of a natural suite of sequentially biodegraded oils. The basin hosts moderately to severely biodegraded petroleum, regionally distributed and in single, more or less continuous, oil columns. In this study, a series of oil samples from the Alberta heavy oil and oil sands provinces, with varying degrees of biodegradation, were analyzed to assess the impact of progressive biodegradation on the molecular and C, H, N, and S isotopic compositions of oils. The results of the molecular characterization of the hydrocarbon fraction of the studied oils show that the oils have suffered biodegradation levels from 2 to 10+ (toward the Alberta–Saskatchewan border) on the Peters and Moldowan scale of biodegradation (abbreviated PM 2 to PM 10) and from tens to hundreds on the Manco scale. Within single reservoirs, increasing biodegradation was observed from top to bottom of the oil columns at all sites studied. The whole oil stable isotopic compositions of the samples varied in the ranges δ13C = −31.2‰ to −29.0‰, δ2H = −147‰ to −133‰, δ15N = 0.3–4.7‰ and δ34S = 0.4–6.4‰. The maximum differences between δ values of samples (Δ) within single oil columns were Δ13C = 1.4‰, Δ2H = 7‰, Δ15N = 1.7‰ and Δ34S = 1.0‰. Regional variations in the isotopic compositions of oil samples from different wells (averaged values from top to bottom) were 1.2‰ for δ13C, 12‰ for δ2H, 4.1‰ for δ15N and 5.5‰ for δ34S and hence generally significantly larger variations were seen than variations observed within single oil columns, especially for N and S. It appears that even severe levels of biodegradation do not cause observable systematic variations in carbon, nitrogen or sulfur isotope composition of whole oils. This indicates that sulfur and nitrogen isotopic compositions may be used in very degraded oils as indicators for oil charge from different source rock facies.  相似文献   

15.
Suberinite, and subereous components of amorphous nature, comprise largely unrecognized, proficient sources of liquid hydrocarbons. Due to difficulties in recognizing the presence of subereous components and suberinite in organic sediments, the contributions of these liptinitic components to the organic input of source rocks are easily underestimated. Severe chemical alterations of suberinite in the vitrinite reflectance range of Ro = 0.35–0.60% are demonstrated. Organic geochemical data, obtained from samples subjected to natural maturation, reveal that subereous components/suberinite undergoes early thermal degradation to generate large amounts of hydrocarbons below Ro = 0.60%. Data obtained from laboratory maturation of immature, suberinite-rich coals indicate that about 50% of the potential of suberinite for generating C12+ hydrocarbons has already been exhausted during natural maturation of the samples, prior to the onset of the traditionally defined “oil window”. The present data (a) contradict the assumption that suberinite is mainly sourced by selective preservation/enrichment of a stable, highly aliphatic biopolymer, i.e. “suberan” and (b) suggest that suberinite contains appreciable amounts of aliphatic and aromatic moieties which are released at low thermal stress.  相似文献   

16.
《Applied Geochemistry》1998,13(7):851-859
Emerging acceptance of the limitations of separate phase product recovery has spawned interest in the intrinsic alteration of residual separate phase petroleum products. In this study the geochemical changes in a continuous core through soil containing a separate phase diesel fuel #2 (SPD) in contact with groundwater are investigated. Chemical heterogeneities are shown to exist which can be attributed to weathering, particularly intrinsic biodegradation. The results show that the aliphatic hydrocarbon content is reduced and the δ13C ratio of the aliphatic hydrocarbons increased from top to bottom in the core. Both changes are thought to be due to preferential biodegradation of (isotopically lighter) n-alkanes. A slight increase in the relative abundance of shorter chain n-alkanes (<n-C17) was also observed. The distribution of the dominant aromatic hydrocarbons (C0–C3 alkyl-naphthalenes) is remarkably consistent throughout the core, although naphthalene is depleted below the oil–water interface. In spite of low oil saturation (S0), little or no evidence of biodegradation is noted at the uppermost boundary of the SPD. However, intrinsic biodegradation is evident approximately 0.3 m above the oil–water interface in spite of higher S0. The extent of the chemical changes attributable to biodegradation (described above) gradually increases below the oil–water interface, eventually reaching a maximum at the bottom of the SPD profile (∼1.2 m below the interface) where S0 is again reduced. The relatively higher level of biodegradation observed at and below the oil–water interface may be attributed to the reduced S0 in this zone. An estimate of the mass reduction in diesel fuel between the uppermost and bottommost parts of the core is calculated to be 23% (by weight), due predominantly to the biodegradation of n-alkanes.  相似文献   

17.
Solid, liquid and gaseous hydrocarbons occur throughout the Dead Sea Basin (Israel and Jordan) both in surface exposures and in drillings. The unaltered asphalts and heavy oils are characterized by very high sulfur content (ca. 11%) with δ34S = +5% and δ13C = −28% to −29%, low content of n-paraffins, pristane to phytane ratio of 0.5 and by containing almost exclusively VO-porphyrins. The distribution of n-paraffins in samples from deep sources shows a smooth enveloped miximizing at C15–20. Surface and shallow samples show clear evidence of biodegradation. The ozokerite, known only from the east side of the basin, is composed primarily of long chain n-paraffins with a maximum at C39. The gases known from the southern margin of the basin are composed mostly of methane.The source for the bitumens is unknown. Two hypotheses are discussed. The first is that the asphalts and heavy oils represent an alteration products of crude oil which migrated into the basin or which might have been generated in the basin itself. The second hypothesis favors an origin from low temperature alteration of organic matter from a thermally immature source.  相似文献   

18.
The major steranes of the non-asphaltene fraction of Nigerian tar sand bitumen (maltene) are the c27-c29 diasteranes [13β(H),17α(H); 20R + S] and C28-C29 regular steranes [14β (H),17β (H); 20S]. The reducing metal reaction products of the corresponding asphaltenes (maltene-I) contain mainly C27-C29 regular steranes with the 14β(H),17β(H); 20R + S and 14α(H),17α(H); 20R + S configurations as well as the corresponding diasteranes having the 13β(H),17α(H); 20R + S configuration. These sterane distributions suggest that maltene-I corresponds to an unaltered oil whilst the maltene is equivalent to the product of severe biodegradation of maltene-I. This is consistent with maltene-I being the remnant of “original oil” trapped within the asphaltene matrix and protected from the effect of in-reservior biodégradation.Degradation of Nigerian asphaltenes by refluxing with ferric chloride-acetic anhydride or methanolic potassium hydroxide also releases soluble reaction products having the characteristics of unaltered oil such as the presence of n-alkanes having an unbiased distribution. These methods appear to be milder and more suitable than reducing metal reactions for releasing hydrocarbons occluded by asphaltenes.  相似文献   

19.
The thermodynamic stability of selected alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers in the C27, C28, C29, C30 and C31 families were calculated using molecular mechanics (MM2) methods and, where possible, calculated equilibrium ratios of certain isomers were compared with observed ratios of isomers in thermally mature crude oil samples. Those calculated and observed ratios having similar values include: (1) the relative distributions among 17β(H)/17α(H) and 21β(H)/21α(H)-hopanes including the absence of the 17β(H),21β(H)- and 17α(H),21α(H)-hopanes; (2) the 22R/22S ratios in 30-methyl-17α-hopane and 30-methyl-17β-moretane; (3) the relative distributions among 17α(H)/17β(H)- and 21α(H)/21β(H)-28,30-bisnorhopanes and among 25,28,30-trisnorhopanes, including the relatively greater stability of 17β(H) isomers in contrast to the regular hopane series; and (4) the ratios of 28(18−17S)abeo hopanes with respect to their unrearranged counterparts including the C27 compounds, Ts/Tm.  相似文献   

20.
The solubility of a 44° API (0.806 sp. gr.) whole crude oil has been measured in methane with water present at temperatures of 50 to 250°C and pressures of 740 to 14,852 psi, as have the solubilities of two high molecular weight petroleum distillation fractions at temperatures of 50 to 250°C and pressures of 4482 to 25,266 psi. Both increases in pressure and temperature increase the solubility of crude oil and petroleum distillation fractions in methane, the effect of pressure being greater than that of temperature. Unexpectedly high solubility levels (0.5–1.5 grams of oil per liter of methane—at laboratory temperature and pressure) were measured at moderate conditions (50–200°C and 5076–14504 psi). Similar results were found for the petroleum distillation fractions, one of which was the highest molecular weight material of petroleum (material boiling above 266°C at 6 microns pressure). Unexpectedly mild conditions (100°C and 15,200 psi; 200°C and 7513 psi) resulted in cosolubility of crude oil and methane. Under these conditions, samples of the gas-rich phase gave solubility values of 4 to 5 g/l, or greater.Qualitative analyses of the crude-oil solute samples showed that at low pressure and temperature equilibration conditions, the solute condensate would be enriched in C5–C15 range hydrocarbons and in saturated hydrocarbons in the C15+ fraction. With increases in temperature and especially pressure, these tendencies were reversed, and the solute condensate became identical to the starting crude oil.The data of this study, compared to that of previous studies, shows that methane, with water present, has a much greater carrying capacity for crude oil than in dry systems. The presence of water also drastically lowers the temperature and pressure conditions required for cosolubility.The data of this and/or previous studies demonstrate that the addition of carbon dioxide, ethane, propane, or butane to methane also has a strong positive effect on crude oil solubility, as does the presence of fine grained rocks.The n-paraffin distributions (as well as the overall composition) of the solute condensates are controlled by the temperature and pressure of solution and exsolution, as well as by the composition of the original starting material. It appears quite possible that primary migration by gaseous solution could ‘strip’ a source rock of crude-oil like components leaving behind a bitumen totally unlike the migrated crude oil. The data of this study demonstrate previous criticisms of primary petroleum migration by gas solution are invalid; that primary migration by gaseous solution cannot occur because methane cannot dissolve sufficient volumes of crude oil or cannot dissolve the highest molecular weight components of petroleum (tars and asphaltenes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号