首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
赵莉  雷腊梅  彭亮  韩博平 《湖泊科学》2017,29(1):193-199
拟柱孢藻(Cylindrospermopsis raciborskii)是热带地区普遍存在的蓝藻种类,已在广东省很多水库成为优势种类甚至形成水华,作为一种新的有害水华类型,目前对其成因研究甚少.以广东省江门市镇海水库为研究对象,于2014年11月—2015年10月期间对其进行逐月采样,观测理化因子和浮游植物组成,测定拟柱孢藻的丝体长度,初步探讨该水库拟柱孢藻优势形成的原因.数据表明,拟柱孢藻是镇海水库的绝对优势种,常年生物量较高,介于5.9~15.5 mg/L之间,平均生物量为11.3 mg/L,占浮游植物总生物量的93.5%.从季节上看,拟柱孢藻生物量在2—6月相对较高,最高生物量出现在6月,10月和11月生物量最低.拟柱孢藻的丝体长度具有显著的季节变化,与水温呈极显著负相关.相关性分析表明拟柱孢藻生物量与总氮、总磷浓度呈显著正相关,与氮磷比呈显著负相关,而逐步回归分析表明拟柱孢藻生物量的变化主要由总磷浓度决定,推测该藻对磷的超强吸收和储存能力在其生物量季节变动中起重要作用.  相似文献   

2.
天目湖沙河水库水质对流域开发与保护的响应   总被引:3,自引:1,他引:3  
利用长期水质监测资料,对苏南地区天目湖沙河水库十多年来的开发与保护工作的水库水质影响情况进行了分析.结果发现:大规模放养鳙鱼等不合理的渔业开发对水库硅藻、蓝藻等浮游植物异常增殖有较大的促进作用;在营养盐处于中富营养水平下,利用不同食性鱼类的组合调控,能够较快地抑制浮游植物的异常增殖,但当浮游植物生物量下降到一定程度以后,其控制能力下降,营养盐和气候因子的影响变得更为重要;流域的旅游开发和农业开发都对水库营养盐、透明度等水质指标产生较大影响,特别是坡地大规模茶叶种植等农业开发对水库氮的影响十分明显;春季少雨等气候变化因子对水库氮等营养盐浓度影响较大,但影响是短时段的.研究表明,合理调控水库渔业养殖,控制流域农业、旅游等开发活动强度,减少农业化肥施用量,恢复和扩大湿地等流域营养盐削减途径,是沙河水库水质保护的关键,也对同类水库水质保护具有示范价值.  相似文献   

3.
三峡水库蓄水以来,支流小江呈富营养化加重的趋势,且多次暴发春季水华.水库蓄水以后支流流速变缓,水体滞留时间增加,是引发支流水华的主要因素之一.基于MIKE软件,建立小江调节坝下游至河口的二维水动力-富营养化模型,考虑碳、氮、磷3种元素在浮游植物有机体、死亡腐屑和无机盐中的循环转化,模拟小江河段的春季水华过程.分析小江生态调节坝的水量调节抑藻作用,即人为制造"洪水脉冲",增加短时间内的水流流速,对下游流场进行扰动以控制水华.计算结果表明,增大泄水量对调节坝下游的小江河段的春季藻华总体上具有一定的抑制作用.小江上游河段调度作用效果明显,下游高阳至入汇口河段调节作用较小,上游调节坝水力调度可以作为三峡水库支流水华应急治理措施之一.营养盐控制应该是控制支流水华的根本措施.  相似文献   

4.
洪水事件能够在短时间内对生态系统的物理与生物过程产生重大影响,从而导致浮游植物群落结构的快速演替.2010年9月,广东省大型水库——高州水库发生特大洪水.为了解洪水的生态效应,于2010年1月-2011年12月对高州水库湖沼学变量和浮游植物进行了调查研究.特大洪水期间,高州水库流域内大量泥沙等颗粒物进入水体,将原有有机物相对较多的沉积物覆盖,有助于减少营养盐的底泥释放,洪水后次年春季枯水期水体营养盐浓度明显降低(尤其是磷,总磷浓度低于0.01 mg/L).洪水过后水体中悬浮物的组成改变,在接下来的水体混合期间无机颗粒物的再悬浮导致水体透明度显著降低,但次年水库整体的透明度升高,浮游植物生物量降低.洪水事件导致的水体理化环境的改变使水库浮游植物群落结构改变,由洪水前以群体蓝藻和大个体绿藻(H1和N A功能类群)为优势类群的群落转变为洪水后以中心纲浮游硅藻和甲藻(A、B和LO功能类群)为优势类群的群落,而以往枯水期常有发生的粘质鱼腥藻等蓝藻水华在洪水后春季枯水期没有出现.  相似文献   

5.
The European Union Water Framework Directive (WFD), a new regulation aiming to achieve and maintain a clean and well-managed water environment, refers to phytoplankton as one of the biological quality elements that should be regularly monitored, and upon which the reference conditions of water quality should be established. However, the use of phytoplankton as a biological quality element will result in several constraints, which are analyzed in this article with examples from Portuguese waters. Specifically, the establishment of reference conditions of water quality may be difficult in some water bodies for which no historical data exists. The sampling frequency proposed for phytoplankton monitoring does not seem suitable to assess phytoplankton succession, and may preclude the detection of algal blooms. Finally, the use of chlorophyll a as a proxy of phytoplankton biomass and abundance has been proposed by some authors, but it may overlook blooms of pico- and small nanophytoplankton, and overestimate the importance of large microphytoplankton. Furthermore, most studies in Portugal have used only inverted microscopy for phytoplankton observation and quantification; this method does not permit the distinction between autotrophic and heterotrophic cells, especially in samples preserved with Lugol's solution, and does not allow the observation of smaller-sized cells. Finally, some techniques, such as remote sensing and chemotaxonomic analysis, are proposed to be used as supplements in phytoplankton monitoring programs.  相似文献   

6.
The results of long-term observations are used to analyze the seasonal and year-to-year variations of the abundance and biomass of planktonic algae in connection with the seasonal dynamics of water level in the Kuibyshev Reservoir. The dynamics of level regime in the reservoir in combination with climate conditions are a determining factor for phytoplankton development. The adverse effects of eutrophication (in particular, water blooming) can be reduced by maintaining an optimal water level in the reservoir—not below the normal water level (53 m BS) in the summer.  相似文献   

7.
Phytoplankton and zooplankton were monitored during 2 years in four eutrophic shallow lakes (two turbid and two clear water) from two wetland reserves in Belgium. In each wetland, phytoplankton biomass was significantly higher in the turbid lake than in the clear water lake. Although total macrozooplankton biomass and the contribution of daphnids to total zooplankton biomass was comparable in the clear water and the turbid lakes, the grazing pressure of macrozooplankton on phytoplankton as estimated from zooplankton to phytoplankton biomass ratios was higher in the clear water lakes. Estimated grazing by daphnids in the clear water lakes was always high in spring. In summer, however, daphnid biomass was low or daphnids were even absent during prolonged periods. During those periods phytoplankton was probably controlled by smaller macrozooplankton or by submerged macrophytes through nutrient competition, allelopathic effects or increased sedimentation rates in the macrophyte vegetation.  相似文献   

8.
The increased air temperature is expected to have important driver on spring phytoplankton dynamics. To test whether spatial heterogeneity modifies the synchronous responses of phytoplankton to regional temperature driver, we evaluate temporal coherences for physical factors (temperature, water stability and non-algal light extinction), nutrients (nitrogen, phosphorus and silicon), and biomass and density of phytoplankton by Pearson correlation analysis and synchrony for phytoplankton community dynamics by Mantel test and nonmetric multi-dimensional scaling (NMS), during spring bloom (February 23–April 28, 2005) within Xiangxi Bay, a high spatial gradient bay of Three-Gorges Reservoir (China). The high level of temporal coherences for surface water temperature (r = 0.946, p < 0.01) and relative water column stability (r = 0.750, p < 0.01) were found between pair sites (A and B), in which the increase trends occurred with increase in regional air temperature during the study period. However, the low synchrony for phytoplankton dynamics were indeed observed between Site A and B, especially for the density of common dominant taxa (Cyclotella spp.: r = 0.155, p = 0.388) and community structure (Mantel test: r = 0.351). Moreover, the local habitat characteristics such as nutrient (nitrogen and phosphorus) and non-algal light extinction showed low levels of temporal coherence. It indicated that local community of phytoplankton varies rather independently within the single lentic bay with high spatial heterogeneity and that dispersal of algal organisms among locations cannot overwhelm out these local dynamics. Contrary to many studies, the present results argued that, in a small geographic area (i.e., a single reservoir bay of approximately 24 km length), spatial gradients also may influence spring phytoplankton response to regional temperature driver.  相似文献   

9.
Synechococci are small (<1 μm) coccoid prokaryotes that play a significant ecological role in microbial food webs and are important contributors to carbon and nitrogen biogeochemical cycles. Under funding from NOAA and NASA, we developed a time series observatory to understand the seasonal variability of Synechococcus and other phytoplankton. Our goal is to understand the distribution and relative contribution of Synechococcus to the carbon cycle and how they relate to nutrients and temperature. Synechococcus in the southern Mid-Atlantic Bight exhibited a clear seasonal abundance pattern in both inshore and offshore waters—peaking in abundance (11×104 cells ml−1) during warm periods of summer. Synechococci were numerically important during periods of stratification when waters were warm and macronutrients were low. Using a simple algorithm to convert cellular volume to cellular carbon using image analysis, we estimated that Synechococcus cellular carbon ranged from 0.1 to 1.5 pg C per cell and was most significant compared to total particulate carbon in the summer peaking at ∼25% of the total carbon available. No direct correlations were found between Synechococcus abundance and nitrate, nitrite, ammonium, phosphate, and silicate. However, inshore Synechococcus abundance peaked at 104 cells ml−1 when nitrogen concentrations were lowest. Our results suggest that Synechococcus is adapted to warm temperatures and are capable of demonstrating rapid growth during summer when macronutrients are limiting. The ability of Synechococcus to take advantage of high summer temperatures, low nutrient concentrations and low light levels allows them to maintain a picoplankton community during periods of low detritus and nanophytoplankton is nutrient limited. Temperature-dependence is important in altering the size spectrum of the phytoplankton community and affects the carbon cycle on the Mid Atlantic Bight.  相似文献   

10.
丹江口水库浮游植物时空变化特征   总被引:8,自引:5,他引:3  
王英华  陈雷  牛远  余辉  罗明科 《湖泊科学》2016,28(5):1057-1065
为研究丹江口浮游植物的群落特征,探讨影响浮游植物时空分布的环境因子,于2014年5月2015年4月对丹江口水库进行了为期1年的调查.此次调查共采集到浮游植物66种,隶属于7门21科38属.浮游植物全年平均生物量为0.35 mg/L,平均密度为9.08×10~5cells/L.优势种为脆杆藻、小环藻、直链藻和栅藻,其中脆杆藻所占比例最大,平均生物量为0.089 mg/L,占总生物量的25.43%.近些年丹江口水库营养水平的提高可能是脆杆藻生物量升高的主要原因.绿藻和蓝藻在夏季大量繁殖,硅藻为春、秋和冬季优势门类.汉江库区浮游植物生物量大于丹江库区,两个库区的浮游植物种类组成存在明显的差异,丹江库区优势门类为硅藻门,而汉江库区为绿藻门.浮游植物生物量与环境因子的相关分析表明,浮游植物生物量的主要影响因子是总磷浓度、pH值和溶解氧浓度.RDA分析表明,影响浮游植物组成的主要环境因子是溶解氧浓度、pH值、总磷浓度和水温.为控制浮游植物的生物量,防止其异常增殖造成水华,应严格控制外源营养盐特别是磷元素的输入.本研究可为丹江口水库的水质改善及富营养化防治提供一定的科学依据.  相似文献   

11.
Phytoplankton size structure plays a significant role in controlling the carbon flux of marine pelagic ecosystems. The mesoscale distribution and seasonal variation of total and size-fractionated phytoplankton biomass in surface waters, as measured by chlorophyll a (Chl a), was studied in the Southern Yellow Sea using data from four cruises during 2006–2007. The distribution of Chl a showed a high degree of spatial and temporal variation in the study area. Chl a concentrations were relatively high in the summer and autumn, with a mean of 1.42 and 1.27 mg m−3, respectively. Conversely, in the winter and spring, the average Chl a levels were only 0.98 and 0.99 mg m−3. Total Chl a showed a clear decreasing gradient from coastal areas to the open sea in the summer, autumn and winter cruises. Patches of high Chl a were observed in the central part of the Southern Yellow Sea in the spring due to the onset of the phytoplankton bloom. The eutrophic coastal waters contributed at least 68% of the total phytoplankton biomass in the surface layer. Picophytoplankton showed a consistent and absolute dominance in the central region of the Southern Yellow Sea (>40%) in all of the cruises, while the proportion of microphytoplankton was the highest in coastal waters. The relative proportions of pico- and nanophytoplankton decreased with total biomass, whereas the proportion of the micro-fraction increased with total biomass. Relationships between phytoplankton biomass and environmental factors were also analysed. The results showed that the onset of the spring bloom was highly dependent on water column stability. Phytoplankton growth was limited by nutrient availability in the summer due to the strong thermocline. The combined effects of P-limitation and vertical mixing in the autumn restrained the further increase of phytoplankton biomass in the surface layer. The low phytoplankton biomass in winter was caused by vertical dispersion due to intense mixing. Compared with the availability of nutrients, temperature did not seem to cause direct effects on phytoplankton biomass and its size structure. Although interactions of many different environmental factors affected phytoplankton distributions, hydrodynamic conditions seemed to be the dominant factor. Phytoplankton size structure was determined mainly by the size-differential capacity in acquiring resource. Short time scale events, such as the spring bloom and the extension of Yangtze River plume, can have substantial influences, both on the total Chl a concentration and on the size structure of the phytoplankton.  相似文献   

12.
水网藻水华在国外出现较多,在国内鲜有报道.2013年5月对鄱阳湖进行采样时首次发现水网藻水华;结合现场观测及遥感影像确定其分布范围为老爷庙至落星墩水域,分布面积约为26 hm2,推测水网藻可能是由上游稻田等静止水体迁移至鄱阳湖,在相对静水区进行聚集生长,加上合适的理化条件(温度及营养盐),从而形成水华.在此基础上,本文进一步分析了水网藻水华对鄱阳湖水生态环境可能产生的影响.  相似文献   

13.
广东长潭水库富营养化与浮游植物分布特征   总被引:1,自引:1,他引:1  
为掌握梅州市长潭水库富营养化状态与浮游植物分布特征,为控制藻类水华暴发提供科学依据,2011年10月至2012年7月,在长潭水库关键断面选取10个监测点,测定水体理化特征、浮游植物种类、丰度等指标,采用营养状态指数(TLI)和Shannon-Wiener多样性指数法对水质污染现状进行评价,并分析浮游植物类群分布特征.结果表明:长潭水库水体富营养状态在4、10和12月处于中营养级,7月份处于富营养级,营养指数从库区中游上游逐渐降低;观测期间共检出浮游植物4门11科16属,通过丰度比较,发现长潭水库以蓝绿藻为优势种,并且季节变化明显,总体表现为7月 >4月 >10月 >12月;藻类多样性指数分析显示,水库水体污染水平为中度,中游和库区(除7月)为轻度污染,与综合营养指数结果一致;长潭水库污染源调查分析结果表明,该水库主要为氮、磷污染,污染源主要为上游禽畜养殖废水.  相似文献   

14.
Stratification (throughout the year) and low solar radiation (during monsoon periods) have caused low chlorophyll a and primary production (seasonal average 13–18 mg m−2 and 242–265 mg C m−2 d−1, respectively) in the western Bay of Bengal (BoB). The microzooplankton (MZP) community of BoB was numerically dominated by heterotrophic dinoflagellates (HDS) followed by ciliates (CTS). The highest MZP abundance (average 665±226×104 m−2), biomass (average 260±145 mg C m−2) and species diversity (Shannon weaver index 2.8±0.42 for CTS and 2.6±0.35 for HDS) have occurred during the spring intermonsoon (SIM). This might be due to high abundance of smaller phytoplankton in the western BoB during SIM as a consequence of intense stratification and nitrate limitation (nitracline at 60 m depth). The strong stratification during SIM was biologically evidenced by intense blooms of Trichodesmium erythraeum and frequent Synechococcus–HDS associations. The high abundance of smaller phytoplankton favors microbial food webs where photosynthetic carbon is channeled to higher trophic levels through MZP. This causes less efficient transfer of primary organic carbon to higher trophic levels than through the traditional food web. The microbial food web dominant in the western BoB during SIM might be responsible for the lowest mesozooplankton biomass observed (average 223 mg C m−2). The long residence time of the organic carbon in the surface waters due to the active herbivorous pathways of the microbial food web could be a causative factor for the low vertical flux of biogenic carbon during SIM.  相似文献   

15.
16.
换水率和营养水平对太湖流域横山水库硅藻水华的影响   总被引:2,自引:1,他引:1  
为探讨水文过程对水库硅藻异常增殖的影响,对江苏宜兴横山水库的硅藻生消过程中浮游植物、水质、降水、水位、气温等指标进行观测研究.结果表明,横山水库硅藻年际生物量波动很大,9月出现明显的异常增殖,总生物量达到14.27 mg/L,硅藻的优势属为针杆藻(Synedra)、小环藻(Cyclotella)、曲壳藻(Achnanthes)和直链藻(Melosira),以针杆藻的优势度最高;浮游植物生物量与营养盐浓度关系不明显,与总氮浓度甚至呈负相关,但小环藻生物量与水体溶解性磷浓度呈正相关;水库的换水率与浮游植物生物量、硅藻的异常增殖过程和营养盐浓度水平均密切关联,总氮、溶解性磷浓度与水库换水率呈正相关,而硅藻生物量与水库换水率呈指数负相关.数值拟合分析显示硅藻生物量可以用换水率和磷浓度推算而得.研究表明,对于中营养水平的水库,硅藻生物量变化可能受水文过程与水质条件共同控制,在水库的硅藻水华防控中,既要加强营养盐水平的严格控制,也需考虑水文过程的调控手段.  相似文献   

17.
一座新建水库——广东剑潭水库浮游植物动态特征   总被引:2,自引:1,他引:2  
剑潭水库是珠江水系东江下游新建水库,2006年10月开始蓄水,2007年6月蓄水完毕.该水库属直流型水库,2008年水力滞留时间为0.46-3.62d.2006-2008年调查了该水库浮游植物的动态特征.结果表明,调查期间浮游植物丰度为182-6267cells/ml,从空间变化看,在调查期间,浮游植物丰度由上游向下游呈上升趋势.从年间变化看,蓄水后第一年坝区浮游植物丰度不仅明显高于蓄水前和蓄水期间,并且浮游植物最高丰度出现在蓄水后第一年的枯水期(12月).与此同时,在蓄水过程中,浮游植物群落结构也逐渐发生了变化,蓝藻相对丰度明显上升,绿藻相对丰度呈下降趋势.水力滞留时间、透明度和总磷是影响剑潭水库浮游植物时空变化的重要因素.高的平流损失率和低的透明度使得浮游植物现存量与水库氮、磷水平并不相符.相对较长的水力滞留时间、较高的透明度和总磷导致了浮游植物在蓄水后第一年(2008年)的枯水期出现一个峰值.  相似文献   

18.
The availability and partition of nitrogen (N) and phosphorus (P) in inorganic and organic compartments, as well as their stoichiometric ratio, are influenced by both physical and biological forcing factors. On this basis, the temporal and spatial dynamics in N:P atomic ratios in different compartments may provide information on the functioning of marine ecosystems. Here we explore the relative importance of water temperature, river inputs, wind mixing, stratification, ingression of nutrient-depleted Eastern Adriatic Current and phytoplankton biomass on concentrations and ratios between nitrogen and phosphorus in a semi-enclosed bay (the Gulf of Trieste), using data from monitoring programs carried out during 8 years. Water samples are first classified in 6 water types based on N:P ratios in different components, and then relationships between water type space-time distribution and a set of forcing factors is sought. Results show that the gulf is characterised by relatively stable N:P ratios in all compartments (about 23-26), always exceeding the classical Redfield ratio. In the surface layer, however, nitrogen and phosphorus dynamics are decoupled because of river input and plankton productivity, and a significant spatial and temporal variability is observed in terms of stoichiometric balance, nutrient concentrations and partition among the different pools. Deviations from stable N:P ratios follow a seasonal evolution. In spring, continental inputs alter inorganic nutrient compartments (N:P up to 115); later on, during the seasonal succession of biological processes (e.g. late spring phytoplankton blooms, summer increase in microbial activities and autumn phytoplankton blooms), a change is also seen in the organic dissolved and particulate pools. Multivariate statistical analysis suggests that, among the considered forcing factors, the most relevant in modulating the N:P stoichiometry in the Gulf of Trieste are river inputs and ingression of the Eastern Adriatic Current (acting in opposite directions) along with phytoplankton dynamics. During the whole period, besides variations in N:P stoichiometry, in the Gulf of Trieste dissolved organic matter represents the largest pool of N and P, which can provide a source of nutrients for the planktonic community alternative to inorganic nutrient.  相似文献   

19.
The spatial and temporal distribution of physical, chemical and biological variables of the NE continental shelf of the Gulf of Cadiz were analyzed monthly during almost three annual cycles. This analysis was performed with the aim of deriving the main forcing factors controlling variability at inter-annual, seasonal and short-time scales. Meteorological forcing related to heavy episodes of rainfall that affected river discharges and the wind regime, controlled both the currents along the shelf together and the nutrient concentrations of the surface waters. Meteorological forcing in turn determined the subsequent development and maintenance of phytoplankton blooms. Superimposed on the seasonal cycle typical of temperate latitudes, the inputs of continental nutrients mainly from the Guadalquivir River, along with episodes of upwelling favored by the predominance of westerly winds triggered phytoplankton growth on the shelf, highlighting the markedly relevant role of this large estuary in the control of the biological activity on the shelf.  相似文献   

20.
为了掌握富春江水库浮游植物群落特征,探寻其与环境因子的关系,于2006年1月至2007年12月,对其进行了20次采样调查.鉴定结果表明富春江水库共有浮游植物107种,浮游植物密度范围在0.21×10~5-3.01×10~7cells/L之间.浮游植物组成随季节变化有所不同,春季绿藻、隐藻、硅藻占优势,夏季蓝藻和硅藻占优势,秋冬季硅藻、隐藻占优势.浮游植物群落结构受水文条件的影响较大,浮游植物密度与水体温度呈显著正相关,与透明度在不同范围内表现出不同的相关关系;与TN、TP在不同范围内表现出不同的相关关系,与TN/TP及可溶性硅呈显著正相关.库区总氮和总磷浓度均很高,足够满足藻类生长需要;TN/TP较低,基本在8-30之间,说明氮磷含量不是富春江库区藻类生长的限制因子.水文季节性变化会明显地影响浮游植物群落结构和密度的季节性变化,特别是降雨、水温及水力滞留时间等因子是影响水库浮游植物群落结构及密度变化的主要因子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号