首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using data from 31 ponds, we investigated the importance of environmental (e.g. habitat complexity, nutrient content, pH) and biotic factors (i.e. fish predation) on the spatial patterns of planktonic (phytoplankton and zooplankton) and benthic (macroinvertebrates) assemblages. We also evaluated the degree of concordance among assemblages and between the functional and taxonomic composition of assemblages, and test the hypothesis that surrogates of biodiversity (e.g. taxonomic or functional groups) can be used in pond conservation and biomonitoring studies. We found that the spatial patterns of benthic and pelagic assemblages were determined by macrophyte coverage, water quality and, to a lesser extent, fish. However, shifts in the taxonomic and functional composition were not congruent. Moreover, local environmental variation was slightly more important for the taxonomic than the functional composition of assemblages, except for phytoplankton. The degree of concordance among assemblages was also weak, which may be partly due to the fact that species respond individualistically to environmental variation. These findings also suggest that the coupling between benthic and pelagic habitats in flatland ponds is weak, and that the use of surrogate measures or indicator groups in pond conservation studies may not be appropriate.  相似文献   

2.
3.
We assess the effects of taxonomic resolution (genus-family levels) on the ecological assessment of 39 highly heterogeneous ponds located in north-western Spain.Non-metric multidimensional scaling (MDS) and one-way analysis of similarities (ANOSIM) were used to investigate the effects of taxonomic resolution on the macroinvertebrate assemblage structure. The Mann Whitney U-test and discrimination efficiency were used to assess the ability of nine diversity measures (total richness, rarefied richness samples of 25, 50 and 100 individuals, Margalef's index, Pielou's evenness, Shannon-Weaver's index, Simpson's index and percent dominant taxon) to discriminate between acceptable (best available and good conditions) and unacceptable (moderate, poor and very poor) conditions using three levels of taxonomic resolution: (i) family, (ii) family plus subfamilies of benthic non-biting midges and (iii) genus level.Based on non-metric MDS, the macroinvertebrate assemblages of ponds of acceptable (A) and unacceptable (N) conditions were statistically undistinguishable, both at genus and family levels. On the other hand, based on several community metrics (total richness, Margalef index, etc.) the two sets of samples were statistically different, although only when the genus or the subfamily level was used and after Bonferroni correction. These results suggest that the structure of macroinvertebrate assemblages by itself is more sensitive than the specific composition in distinguishing the fauna living in acceptable and unacceptable conditions. Moreover, dealing with families including many taxa generally showing different tolerance to disturbance may lead to misclassification of ponds. We agree, however, that the two approaches, i.e. assemblage composition and diversity measures, are conceptually different and hence they should be used in combination for a better understanding of the response of single metrics.  相似文献   

4.
In this study, we investigated patterns of spatial variation in macroinvertebrate assemblages in the Lower Mekong Basin (LMB) and examined their relationship with environmental factors. Cluster analysis was used to group macroinvertebrate samples and Linear Discriminant Analysis was performed to discriminate the major factors associated with the macroinvertebrate assemblages. Four clusters could be distinguished based on the dissimilarity between macroinvertebrate assemblages. The assemblages related to the tributaries and the upstream parts (cluster II) were characterized by a lower richness, abundance, diversity and a lower number of indicator taxa compared to the assemblage found downstream in the Mekong delta (cluster I). Aquatic insects and their indicator taxa (e.g. Caenodes sp., Dipseudopsis sp. and Gomphidae sp.), preferring a high-altitude environment with a high dissolved oxygen concentration and a high density of wood/shrub and evergreen forests, were the most predominant group in the assemblages occupying the tributaries and the upstream parts (cluster IIa). The assemblage found in the delta, consisting largely of molluscs and a moderate richness and abundance of worms, crustaceans and dipteran insects, was mainly represented by Corbicula leviuscula and C. moreletiana (molluscs), Namalycastis longicirris and Chaetogaster langi (worms), Corophium minutum and Grandidierella lignorum (crustaceans), and Cricotopus sp. and Clinotanypus sp. (dipteran insects). This assemblage was associated with a large watershed surface area, deep and wide rivers and a high water temperature. The intermediate assemblage (cluster IIb1) in-between could be discriminated based on land cover types including inundated, wetland and agricultural land, and was represented most by molluscs. Strikingly, the assemblage occupying the upstream parts (cluster IIa), which is related to intensified agriculture and a moderate conductivity, was characterized by a higher macroinvertebrate diversity compared to the mountainous and less impacted tributaries. This could mean that the natural stress is high in these systems for some taxa, leading to a lower overall taxonomic richness and abundance. Nevertheless, the number of taxa and the diversity of macroinvertebrates remained relatively high across the basin, especially in the delta assemblage. Therefore, the LMB deserves a particular attention for conservation.  相似文献   

5.
6.
7.
Structure and composition of benthic macroinvertebrate assemblages were investigated during three consecutive years in six headwater streams that exhibit a high variation in environmental conditions, habitat structure and predatory pressure. We examined whether the abundance of functional feeding groups could be best predicted by the abundance of predators and some habitat and chemical variables. Mean density and biomass of macroinvertebrate functional feeding groups varied significantly throughout the study area. Stepwise multiple regression analyses revealed that both density and biomass of functional feeding groups was influenced primarily by chemical features of water. Shredder biomass and scraper density were also influenced by habitat features, the abundance of scrapers increasing in deeper localities at lower altitudes and with abundant macrophytes. The abundance of predatory invertebrates was related to the density and biomass of benthic prey. An influence of fish predation on invertebrate communities was not observed in the study streams. The finding that benthic communities in undisturbed headwater streams are mainly affected by water chemistry variables irrespective of fish predation and habitat features clearly highlight the sensitivity of functional feeding groups to changes in chemical features and their role as indicators for bioassessment.  相似文献   

8.
In this research we evaluate the effects of the method used for estimating the potential surface available for benthic macroinvertebrates in macrophyte and unvegetated habitats on several metrics and habitat preference of aquatic macroinvertebrates in the upper catchment of the Henares River (Guadalajara, Central Spain). Three sampling sites were selected: a well-preserved stream (site A), a stream with no wood riparian vegetation (site B), and a straightened and deforested reach (site C). Two habitats were selected in each site: unvegetated habitat (i.e., substrata without macrophytes) and macrophyte habitat (i.e., substrata covered by macrophytes). In each habitat, six macroinvertebrate samples (including all macrophytes or mineral particles) were collected using a Hess sampler. Diversity and density of major families were referred to the surface of the Hess sampler (=Hess surface method) and to the actual surface of either mineral particles or macrophytes (=actual surface method). In general, for the actual surface method, biomass, richness, dominance, and diversity metrics were higher in the mineral habitat than in the macrophyte habitat. This trend was different for the Hess surface method. In general, densities turned out to be higher in the unvegetated habitat than in the macrophyte habitat when using the actual surface method, but the reverse occurred when using the Hess surface method. This fact is relevant for river biomonitoring, especially when reaches with different dominant substrates (macrophytes vs mineral) are compared using just one of the methods. It is concluded that the macrobenthic metrics and density values are influenced by the method used to estimate the potential available surface for aquatic macroinvertebrates.  相似文献   

9.
Ephemeral aquatic ecosystems have a global distribution being most abundant in semi-arid and arid regions. Due to anthropogenic impacts threatening these environments, there is a need to understand various factors and processes structuring animal communities in these habitats. Macroinvertebrate and zooplankton assemblages were studied in different ephemeral (i.e. flood plain, large endorheic and small endorheic) pans in the south-eastern Lowveld of Zimbabwe in the wet season. Ten Cladoceran species, Calanoids and Cyclopoids taxa and thirty-three macroinvertebrate taxa were identified over the entire hydroperiod. Predator macroinvertebrates were the dominant taxa especially in endorheic pans. The pan categories differed significantly in both zooplankton and macroinvertebrates composition and richness, with zooplankton and macroinvertebrate taxa richness being high in flood plain pans. Conductivity, fish presence, hydroperiod, maximum depth, turbidity and vegetation cover played a major role in shaping both zooplankton and macroinvertebrate communities. The macroinvertebrate community assemblage reveals that small endorheic and flood plain pans represent extremes ends of the environmental gradient in the region while large endorheic pans represent an intermediate end.  相似文献   

10.
Springs are stable environments with constant abiotic factors and therefore of use in variety of ecological experiments. We investigated the influence of canopy coverage on abundance, diversity, phenology and feeding guilds among Diptera assemblages at two rheocrene karst springs located near each other. The springs differed by canopy coverage while physicochemical characteristics of the water were similar. We set six emergence traps for one year at each spring covering all available microhabitats proportionally. We hypothesized that canopy coverage will have a strong effect on assemblage composition of Diptera as well as on diversity, abundance, phenology and feeding guilds composition between sites and that it will have a stronger effect than microhabitat characteristics. Similarity of species composition among springs was only 37.5%, with 23 common species/taxa out of 74 species/taxa. Abundance of Diptera was 8.5× higher at the open canopy spring, while diversity and number of species/taxa was higher at closed canopy spring. Emergence started earlier at open canopy site and was prolonged even in winter months. The majority of species were detritus feeders followed by collectors and there was no substantial difference among sites. We conclude that at springs with similar water characteristics, canopy coverage is the main driver of Diptera assemblage structure, with water velocity as a complementary factor. Substrate and other physicochemical factors seem less important.  相似文献   

11.
Changes in lotic benthic macroinvertebrate assemblages along the transboundary Axios‐Vardar River (Greece – Former Yugoslavian Republic of Macedonia) were examined in order to identify major anthropogenic impacts correlated to the benthic community composition during the low flow season. Macrozoobenthos and water samples were collected from 21 sites during summer 2000 and beginning of autumn 2001. Parallel to sampling, the recording of the physical structure of the sites took place using the River Habitat Survey (RHS) method. The multivariate techniques of FUZZY and Canonical Correspondence Analysis (CCA), as well as the Hellenic biotic score (HES) and the habitat quality scores (HMS, HQA) were applied to the data. Total dissolved solids and total suspended solids were found to be the primary factors affecting the structure of the observed communities. Additionally, species composition responded to anthropogenic activities, e. g. untreated sewage effluents, industrial discharges, agricultural runoff, intense water abstraction and impoundment. As expected, macrozoobenthos community composition shifted from sensitive to tolerant taxa where human impacts were most evident.  相似文献   

12.
13.
Aquatic macrophytes produce large amounts of organic matter and have an essential structuring role in floodplains. This process highlights the importance of this community to aquatic biodiversity maintenance. We investigated the role of a flood disturbance on the response of macrophyte assemblages in regional and local structuring in the Upper Paraná River floodplain. Plant species were recorded before (November 2006) and after (March 2007) an uncommon increase in water level caused by the El Niño South Oscillation, which is considered a disturbance. Samples were taken in lakes and backwaters located in the floodplain and connected to three distinct rivers (that differentiate three sub-systems). Species richness and the assemblage structure of macrophyte patches underwent significant changes after the flood disturbance, depending on the specific sub-system (rivers) to which the lakes were connected. In addition, flood disturbance had a strong impact on community organization at the local scale. However, regionalization with respect to sub-systems remained significant after the flood disturbance. Our results emphasize the importance of connection to the river on macrophyte community composition and richness, and suggest that flood events in the Upper Paraná River floodplain disrupt community organization only at fine (local) scales.  相似文献   

14.
The Qinghai Lake area is one of key regions in the Qinghai–Tibet Plateau for supporting a highly specific array of biodiversity. However, little is known about the composition and spatio-temporal patterns of benthic assemblages across this region. Herein, we examined how the community structure and community–environment relationships of macroinvertebrates varied over three consecutive years (2012–2014) across its three distinct water types of the saline main-body (MB) and sub-lakes (SSLs) and the freshwater bodies (FWBs). These waters harbored a poor benthic fauna, with identification of 30 taxa (6 in MB, 6 in SSLs and 23 in FWBs). There were distinct differences of assemblage composition among three water bodies, whereas weak (inter-year) or insignificant (seasons) differences at temporal scales. The CCA models indicated that there were highly naturally-driven environmental-assemblage relationships through time, with constant environmental factors of salinity, water depth and nutrients being the key environmental factors affecting macroinvertebrate variations. The currently overall benthic community composition and structure remains quite stable through years, indicating their suffering less from human activities. These results provide implications for projecting comprehensive benthic biomonitoring and conservation planning for those fragile and under-investigated lakes in the Qinghai–Tibet Plateau.  相似文献   

15.
Several studies have shown that fish assemblages are structured by habitat features, most of them have proposed that there is a positive relationship between habitat structural complexity and species diversity. In this study, we aimed to test this positive-relationship idea in three habitats types (creeks, oxbow lakes and river sandbanks) distributed along the Bita River Basin in South America. Standardized surveys were conducted during January and February of 2016 (low water period) in 30 sites distributed along the entire basin. We recorded 23,092 individuals representing 191 species. To investigate possible relationships between habitat structural complexity and species diversity, we calculated the first three Hill’s numbers, and performed a Non-metric Multidimensional Scaling (NMDS), a Principal Component Analysis (PCA) and a Canonical Correspondence Analysis (CCA). Our results showed that river sandbanks and creeks had the highest species richness. Results from the NMDS analysis (stress = 0.19) showed that fish community composition was different in the assessed habitats (ANOSIM < p = 0.001). According to the results of the principal component analysis, sand percentage, dissolved oxygen, and vegetation width separated river sandbanks from the other habitats. Results from the Hill’s numbers, forward selection procedure, and canonical correspondence analysis suggested that species composition and diversity were significantly influenced by the habitat structural complexity index and conductivity.  相似文献   

16.
We examined the spatial structure of macroinvertebrate assemblages in surface-flowing waters of a glacially-influenced floodplain. The floodplain main-channel responded longitudinally to changes in hydrology with evident coarse-scale zones of upwelling and downwelling; the lower floodplain main channel fell dry in late winter. Physico-chemical attributes differed among tributaries and the main channel. The main channel had lower values of conductivity, alkalinity and nitrate–N than tributaries, with right-side (east-facing) tributaries having the highest values. Left-side (west-facing) tributaries flowing over an exposed rock-face had warmer water temperatures than the main channel and right-side tributaries. The biomass of benthic organic matter and periphyton was highest in right-side tributaries, followed by main channel sites then left-side tributaries. Similarly, macroinvertebrate density and richness were higher in right-side tributaries, intermediate in main channel sites, and lowest in left-side tributaries. Macroinvertebrate assemblages clearly differed between main channel sites, right-side tributaries, and left side tributaries based on an NMDS analysis. Minor differences were observed among main channel sites, although most upstream sites showed some structural differences from downstream sites. Ephemeropterans and plecopterans were most common in main channel sites and right-side tributaries, whereas chironomids and trichopterans also were common in right-side tributaries. Although the main channel changed longitudinally in physico-chemical characteristics, no real patterns of zonation were evident in macroinvertebrate assemblages. Coarse spatial patterns in macroinvertebrate assemblages in the floodplain were reflected in the physico-chemical differences between the main channel and tributaries, and between left-side and right-side tributaries. We conclude that coarse-scale floodplain properties enhance the overall diversity of lotic macroinvertebrates. Consequently, floodplain alterations that reduce surface water heterogeneity/connectivity limits the potential macroinvertebrate diversity of floodplains.  相似文献   

17.
Sandy shores on the West coast of the North Adriatic Sea are extensively protected by different types of defence structures to prevent coastal erosion. Coastal defence schemes modify the hydrodynamic regime, the sediment structure and composition thus affecting the benthic assemblages. This study examines the effectiveness in detecting changes in soft bottom assemblages caused by coastal defence structures by using different levels of taxonomic resolution, polychaetes and/or bivalves as surrogates and different data transformations. A synoptic analyses of three datasets of subtidal benthic macrofauna used in studies aimed at assessing the impact of breakwaters along the North Adriatic coast has been done. Analyses of similarities and correlations between distance matrices were done using matrices with different levels of taxonomic resolution, and with polychaetes or bivalves data alone. Lentidium mediterraneum was the most abundant species in all datasets. Its abundance was not consistently related to the presence of defence structures. Moreover, distribution patterns of L. mediterraneum were masking the structure of the whole macrofaunal assemblages. Removal of L. mediterraneum from the datasets allowed the detection of changes in benthic assemblages due to coastal defences. Analyses on different levels of taxonomic resolution showed that the level of family maintained sufficient information to detect the impacts of coastal defence structures on benthic assemblages. Moreover, the outcomes depended on the transformation used. Patterns of distribution of bivalves, used as surrogates, showed low correlations with the patterns of the total macrofaunal species assemblages. Patterns of polychaetes, if identified to the species or genus level showed higher correlations with the whole dataset. However, the identification of polychaetes to species and genus level is as costly as the identification of all macrobenthic taxa at family level.This study provided additional evidences that taxonomic sufficiency is a useful tool in environmental monitoring, also in investigations on the impacts of coastal defence structures on subtidal macrofauna. The use of coarser taxonomic level, being time-efficient, would allow improving sampling designs of monitoring programs by increasing replication in space and time and by allowing long term monitoring studies.  相似文献   

18.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   

19.
We assess species composition, assemblage structure and distribution of the benthic foraminiferal assemblages from diverse substrates in Moreton Bay, South-East Queensland, Australia. Analysis of 47 surface sediment samples revealed 69 species, three distinct foraminiferal assemblages and six sub-assemblages. The assemblages from the western Bay are characterized by stress tolerant taxa and the lowest diversity, whereas the assemblages from the eastern Bay are characterized by symbiont-bearing taxa and high diversity. We found a correlation between foraminiferal assemblages and substrate conditions that was indicative of strong environmental gradients (substrate type, water quality and salinity), from an urban-impacted assemblage in the westernmost part of the Bay, to a hyposaline, estuarine-influenced assemblage in the western Bay to a nearly normal marine to hypersaline assemblage in the eastern Bay. The FORAM Index was consistent with the changes in water and sediment quality gradient, from the western shoreline to the eastern Bay. Thus the foraminiferal assemblages of Moreton Bay make excellent bio-indicators of environmental changes in a subtropical, estuarine setting in eastern Australia.  相似文献   

20.
Population growth and economic development have resulted in increased water demands, threatening freshwater resources. In riverine ecosystems, continuous monitoring of the river quality is needed to follow up on their ecological condition in the light of water pollution and habitat degradation. However, in many parts of the world, such monitoring is lacking, and ecological indicators have not been defined. In this study, we assessed seasonal variation in benthic macroinvertebrate assemblages in a tropical river catchment in northeastern Tanzania, which currently experiencing an increase in agricultural activities. We examined the potential of in-stream environmental variables and land-use patterns to predict the river macroinvertebrate assemblages, and also identified indicator taxa linked to specific water quality conditions. Macroinvertebrate abundance, taxon richness and TARISS (Tanzania River Scoring System) score were higher in the dry season most likely due to higher surface runoff from agricultural land and poorer water quality in the wet season. In the wet season macro invertebrates seem to be limited by chlorophyll-a, oxygen and phosphorous while in the dry season, when water flow is lower, nitrogen and turbidity become important. Substrate composition was important in both seasons. Given the fact that different selective filters limit macroinvertebrate assemblages in both seasons, a complete picture of water quality can only be established by monitoring in both seasons. Riparian buffer zones may help to alleviate some of the observed negative effects of agricultural activities on the river system in the wet season while limiting irrigation return flows may increase water quality in the dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号