首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater lichens of selected Carpathian streams were investigated to identify their diversity and distribution patterns. Lichens were investigated along six transects, each running across three different habitats (hydrological zones: submerged, splash and riparian), established in upper, middle and lower reaches of the streams and the data were a subject to statistical analyses. The studied mountain streams provided suitable habitats for a number of aquatic and semi-aquatic lichens and species richness in both streams was very similar. Overall, 52 species of lichens were identified from all sampling plots (γ diversity). Species number for a single plot (α diversity) ranged from 1 to 14 species and differences in species composition between the plots (β diversity) were high. Differences were mainly noted for typical terrestrial lichens occurring in riparian zones. The location along the stream reaches did not have a significant effect on species diversity and distribution. The hydrological zone appeared to be the most important predictor explaining the small-scale occurrence and diversity of lichens with species assembled into distinct, low-diversity communities in the transition from submerged to riparian habitats. The distinction among hydrological zones and their lichen biota were corroborated by nMDS analyses. The method of defined plots provides a way of recording baseline data for a particular river, which can be repeated (monitor) in the future.  相似文献   

2.
Fish assemblage data from 69 brooks and small streams were analysed to derive a fish-based typology of small lowland streams in the “Central Plains” ecoregion of northeastern Germany. Altogether 32 native, 1 non-native fish species and 2 lamprey species were detected in the lowland rivers studied. Species number and diversity varied significantly according to mean summer water temperatures and size of the watercourses. Summer-cold brooks contained on average 3-5 species, brooks with higher summer temperatures 5-8 species and small lowland rivers around 10-14 species. Small lowland brooks contained a significantly higher number of fish species when they flowed into or out of lakes: typically around 8-12.In the northeastern German lowlands the following three different river types were distinguished according to their fish assemblages: (1) The “lowland trout brook”, where brown trout (Salmo trutta L.) are reference species and accompanied by stone loach (Barbatula barbatula (L.)), brook lamprey (Lampetra planeri (Bloch)), three-spined stickleback (Gasterosteus aculeatus L.), ten-spined stickleback (Pungitius pungitius (L.)) and gudgeon (Gobio gobio (L.)); (2) The “perch- and roach-dominated lowland brook”, where perch (Perca fluviatilis L.) and roach (Rutilus rutilus (L.)) are reference species, accompanied by pike (Esox lucius L.), three-spined stickleback and gudgeon; and (3) The “lowland lake connected brook” inhabited by higher numbers of fish species, with higher proportions of cyprinid fishes, and higher proportions of limnophilic fish. Apart from perch and roach, bleak (Alburnus alburnus (L.)), common bream (Abramis brama (L.)), silver bream (Blicca bjoerkna (L.)) and rudd (Scardinius erythrophthalmus (L.)) also occurred frequently.Further two observed fish-based types were not considered: The potential stone loach-dominated brook was not sufficiently represented in this study to be verified, and the stickleback brook was considered to represent degradation of lowland trout brooks.The correspondence between the fish-based typology and the morphology-based German stream typology was rather weak and requires further investigation.  相似文献   

3.
Meiobenthic fauna is complex and essential part of the stream benthos and it is known as intermediaries from bacteria to higher trophic levels. However, the dynamics and mechanisms regulating this community at small-scale largely have been neglected. This study was carried out to determine meiofaunal dynamics in a small scale-patterns influenced by flow velocity and other abiotic and biotic factors. We examined meiofauna within bryophytes on a tufa barrier in Plitvice Lakes National Park using a detailed taxonomic approach of various meiofaunal groups and their feeding guilds. We choose three microhabitats (slow, medium, fast) differing significantly in flow velocity above bryophytes. Bdelloid rotifers were the most abundant group in microhabitat with highest flow velocity, while in other two microhabitats nematodes and monogonont rotifers prevailed in abundance. Data on environmental variables and main meiofaunal taxa and feeding guilds were analyzed using redundancy analysis. This analysis indicated that microfilter feeding guild (e.g. bdelloid rotifers) was strongly affected by interaction of flow velocity and POM fractions. Other feeding guilds were influenced by temperature, oxygen and/or pH and did not prefer high flow velocity. Suction-feeder nematodes and microfilter-feeder rotifers were dominant on temporal and spatial scale, indicating their good adaptations on frequently disturbed conditions that prevailed on bryophyte covered tufa barrier. Our results provide comprehensive survey of diversity, density as well as trophic structure of meiofauna in aquatic bryophytes. Differences in meiofaunal composition and density between three microhabitats suggest that the meiofauna is relevant indicator of environmental changes even at small-scale pattern.  相似文献   

4.
We report herein the first results of two soil CO2 efflux surveys carried out at Cuicocha lake-filled and Pululahua caldera volcanic systems, Ecuador. A total of 172 and 217 soil CO2 efflux measurements were taken at the surface environment of Pululahua and Cuicocha calderas respectively, by means of the “accumulation chamber” method during the summer of 2006 to constrain the total CO2 output from the studied area. Soil CO2 efflux values ranged from non-detectable up to 48.5 and 141.7 g m− 2 d− 1 for Cuicocha and Pululahua calderas respectively. In addition, probability graphs were used to distinguish the existence of different geochemical populations. Sequential Gaussian Simulation was used to construct an average map for 100 simulations and to compute the total CO2 emission at each studied area: 106 and 270 t d− 1 (metric tons per day) for Cuicocha (13.3 km2) and Pululahua (27.6 km2) volcanoes respectively.  相似文献   

5.
Eutrophication and toxic loading of freshwater occurred even in early geological epochs as a result of natural factors (e.g., large animals, volcanism), and nutrients and xenobiotics are more quickly integrated in material cycling in aquatic than in terrestrial systems. Therefore, aquatic ecosystems show many defensive mechanisms against organic and toxic loading. Many other defensive reactions can be described in addition to the well-known example of microbial self-purification.Freshwater ecosystems possess compartments which cooperate towards the function and protection of the whole system but, in opposition to these “euoecisms”, there are also “dysoecisms”. The defensive reactions of an ecosystem are founded largely on species-egoistic adaptations that have an (accidental) system-altruistic effect. The whole ecosystem reacts only seldom, and it is not clear whether there are selection processes which favour water bodies with a slow eutrophication and therefore slow silting-up, because the freshwaters are important for the global water balance.It is possible to compare organismic with ecosystemic defensive reactions but the origin of both reactions is very different.  相似文献   

6.
Karst springs represent valuable and often the most threatened habitats in the riverine landscape. Unlike other stream habitats, they have several specifics that determine their insularity in the river continuum, e.g., high seasonal thermal and chemical stability. The presented study aimed to find out the taxonomical and functional richness of three groups of aquatic insects (Ephemeroptera, Plecoptera and Trichoptera) in the Western Carpathians karst springs, as well as uncover the mechanism of the EPT community assembly. Low within-site species richness was generally found, however, there was high between-site diversity and thus high total diversity of the studied groups of benthic invertebrates as well. Species richness of the EPT community was higher in larger and colder springs: those with lower concentrations of CO2 and Fe, as well as higher concentrations of SO42−. Analysis of functional richness, as well as functional dispersion, did not reveal any clear assembly mechanism in the spring EPT community; however, both analyses indicated a higher proportion of environmental filtering there. Unlike the taxonomic richness, the functional richness of the EPT community was significantly higher in small and medium springs with higher water temperatures, as well as in springs with the presence of deadwood. Between-site dissimilarities in the functional composition of EPT were significantly correlated with environmental differences of springs, which determined variables such as spring size and temperature, as well as the concentration of CO2 and SiO2.  相似文献   

7.
The stable isotopic composition of dissolved inorganic carbon (δ13C‐DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C‐DIC increased between 3–5‰ from the stream source to the outlet weir approximately 0·5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in δ13C‐DIC of 2·4 ± 0·1‰ per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased δ13C‐DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream δ13C‐DIC values, points of localized groundwater seepage into the stream were identified by decreases in δ13C‐DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, δ13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Spatial and seasonal variations in CO2 and CH4 concentrations in streamwater and adjacent soils were studied at three sites on Brocky Burn, a headwater stream draining a peatland catchment in upland Britain. Concentrations of both gases in the soil atmosphere were significantly higher in peat and riparian soils than in mineral soils. Peat and riparian soil CO2 concentrations varied seasonally, showing a positive correlation with air and soil temperature. Streamwater CO2 concentrations at the upper sampling site, which mostly drained deep peats, varied from 2·8 to 9·8 mg l?1 (2·5 to 11·9 times atmospheric saturation) and decreased markedly downstream. Temperature‐related seasonal variations in peat and riparian soil CO2 were reflected in the stream at the upper site, where 77% of biweekly variation was explained by an autoregressive model based on: (i) a negative log‐linear relationship with stream flow; (ii) a positive linear relationship with soil CO2 concentrations in the shallow riparian wells; and (iii) a negative linear relationship with soil CO2 concentrations in the shallow peat wells, with a significant 2‐week lag term. These relationships changed markedly downstream, with an apparent decrease in the soil–stream linkage and a switch to a positive relationship between stream flow and stream CO2. Streamwater CH4 concentrations also declined sharply downstream, but were much lower (<0·01 to 0·12 mg l?1) than those of CO2 and showed no seasonal variation, nor any relationship with soil atmospheric CH4 concentrations. However, stream CH4 was significantly correlated with stream flow at the upper site, which explained 57% of biweekly variations in dissolved concentrations. We conclude that stream CO2 can be a useful integrative measure of whole catchment respiration, but only at sites where the soil–stream linkage is strong. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Spatial distribution patterns of total cadmium (Cd) and lead (Pb), their bioavailable fractions and total organic matter in sediment from Anzali wetlands are provided. Total sediment Pb was higher than Cd (34.95 versus 0.024 μg/g dry weight). The geoaccumulation index indicated that the sediment was “uncontaminated”, but some stations were categorized as “unpolluted” to “moderately polluted”. Less than 0.01 of Pb existed in exchangeable and carbonate fractions. The sum of exchangeable and carbonate-bound fractions of Cd was 42%, suggesting that Cd poses high risk to the aquatic ecosystems. Total Cd and Pb exhibited positive relationships with total organic matter. Considering spatial distribution maps of total and bioavailable fractions of metals suggested that high concentrations of metals does not necessarily indicate high bioavailable fraction. The methodologies we used in this study can be in more effective management of aquatic ecosystems, as well as ecological risk assessment of metals, and remediation programs.  相似文献   

10.
滆湖水体光学性质初步研究   总被引:2,自引:1,他引:2  
基于2009年7月至2010年6月滆湖全湖15个采样点的水体光学参数及相关水质理化因子数据,分析滆湖水体周年光合有效辐射(PAR)衰减特性,以期为滆湖沉水植物生态修复提供相关水体光学资料.结果表明,滆湖水体PAR衰减系数(Kd)周年变化范围为1.32~17.42 m-1.秋季Kd相对最小,平均值为2.35 m-1,变化范围为1.32 ~3.70 m-1;夏季Kd相对最大,平均值为6.23 m-1,变化范围为3.68~17.42 m-1.春、秋、冬季,滆湖水体真光层平均深度均满足沉水植物的生长需求,而在夏季滆湖水体真光层平均深度仅为0.84m,小于全湖平均水深(1.20 m),因此夏季PAR是限制沉水植物恢复的因子之一.滆湖水体Kd与透明度(SD)在秋、冬季的关系为:Kd =2.089 +0.705/SD.叶绿素a浓度和悬浮物浓度是影响滆湖水体Kd的重要因子之一.  相似文献   

11.
The southern Yellow Sea (SYS), located to the north of the East China Sea (ECS), was considered part of the ECS when Tsunogai et al. (1999) proposed the “continental shelf pump” (CSP) hypothesis. However, the original CSP carbon dioxide (CO2) uptake flux (2.9 mol C m−2 yr−1) appears to have been overestimated, primarily due to the differences between the SYS and the ECS in terms of their CO2 system. In this paper, we estimated air-sea CO2 fluxes in the SYS using the surface water partial pressure of CO2 (pCO2) measured in winter, spring, and summer, as well as that estimated in fall via the relationship of pCO2 with salinity, temperature, and chlorophyll a. The results indicate that overall, the entire investigated area was a net source of atmospheric CO2 during summer, winter, and fall, whereas it was a net sink during spring. Spatially, the nearshore area was almost a permanent CO2 source, while the central SYS shifted from being a CO2 sink in spring to a source in the other seasons of the year. Overall, the SYS is a net source of atmospheric CO2 on an annual scale, releasing ∼7.38 Tg C (1 Tg=1012 g) to the atmosphere annually. Thus, the updated CO2 uptake flux in the combined SYS and ECS is reduced to ∼0.86 mol C m−2 yr−1. If this value is extrapolated globally following Tsunogai et al. (1999), the global continental shelf would be a sink of ∼0.29 Pg C yr−1, instead of 1 Pg C yr−1 (1 Pg=1015 g).The SYS as a net annual source of atmospheric CO2 is in sharp contrast to most mid- and high-latitude continental shelves, which are CO2 sinks. We argue that unlike the ECS and the North Sea where carbon on the shelf could be exported to the open ocean, the SYS lacks the physical conditions required by the CSP to transport carbon off the shelf effectively. The global validity of the CSP theory is thus questionable.  相似文献   

12.
Submerged macrophyte vegetation has been mapped in four calcareous groundwater-fed streams in Bavaria (southern Germany) in order to compare and assess two different methods of river bioindication. The first one, the trophic index of macrophytes (TIM), is a tool to assess the trophic status of running waters. In contrast, the reference index (RI) is an ecological index which evaluates the difference between a reference community and the actual submerged vegetation, depending on the river type, as required by the Water Framework Directive. Water nutrient concentrations were measured once at selected sites in all water courses.The TIM reflects water phosphorus concentrations, accounting also for nutrients enrichment in the sediment, and is not influenced by shading, depth, substrate and flow velocity of the water course. The TIM is very sensitive to small variations in P concentration when the P level is low, while the index tends to a maximum as soluble reactive phosphorus (SRP) and total phosphorus (Ptot) exceed a certain value.The RI indicates river ecological status which is not only influenced by trophic status but by every factor leading to a deviation of the actual macrophyte community from the reference community. In the investigated rivers the RI indicated reduced flow velocity caused by milldams and shading by riparian vegetation, in addition to trophic status.In rivers that are at the boundary between two different river types, classification of river type can play a crucial role for river status assessment. Incorrect classification of river type can lead to both, a “too good” and “too bad” assessment.  相似文献   

13.
Non-linear tidal constituents, such as the overtide M4 or the compound tide MS4, are generated by interaction in shallow seas of the much larger astronomically forced “primary” tidal constituents (e.g., M2, S2). As such, errors in modeling these “secondary” shallow-water tides might be expected to be caused first of all by errors in modeling the primary constituents. Thus, in the context of data assimilation, observations of primary-constituent harmonic constants can indirectly constrain shallow-water constituents. Here we consider variational data assimilation for primary and secondary tidal constituents as a coupled problem, using a simple linearized perturbation theory for weak interactions of the dominant primary constituents. Variation of the resulting penalty functional leads to weakly non-linear Euler–Lagrange equations, which we show can be solved approximately with a simple two-stage scheme. In the first stage, data for the primary constituents are assimilated into the linear shallow water equations (SWE), and the resulting inverse solutions are used to compute the quadratic interactions in the non-linear SWE that constitute the forcing for the secondary constituents. In the second stage, data for the compound or overtide constituent are assimilated into the linear SWE, using a prior forced by the results of the first stage. We apply this scheme to assimilation of TOPEX/Poseidon and Jason altimetry data on the Northwest European Shelf, comparing results to a large set of shelf and coastal tide gauges. Prior solutions for M4, MS4 and MN4 computed using inverse solutions for M2, S2, and N2 dramatically improve fits to validation tide gauges relative to unconstrained forward solutions. Further assimilation of along-track harmonic constants for these shallow-water constituents reduces RMS differences to below 1 cm on the shelf, approaching the accuracy of the validation tide gauge harmonic constants.  相似文献   

14.
The abundance and preferences of individual invertebrate populations (including zooplankton) closely associated with the substrates provided by aquatic plant structures and open-water areas of Lake Nasser were quantified in this study in order to gain understanding of the importance of submerged macrophyte for invertebrate diversity, and their relation to water properties. The following water parameters were measured: temperature, pH, dissolved oxygen (DO), total dissolved salts, electrical conductivity, turbidity, total suspended solids, carbonate, bicarbonate, nitrate, nitrite, phosphate, sulphate, silica, potassium, total hardness, calcium and magnesium.Five macrophyte species were recorded: Myriopyllum spicatum, Najas horrida, Potamogeton schweinfurthii, Potamogeton pectinatus and Vallisneria spiralis. In total 67 invertebrate species were recorded, comprising 39 Rotifera, 12 Cladocera, 4 Copepoda, 4 Insecta, 2 Protozoa, 2 Ostracoda and one species of Turbellaria, Tardigrada, Annelida and Nematoda. Thirty-seven species were exclusively epiphytic, 11 species were collectively planktonic and 19 species were found in both habitats. The greatest abundance of epiphytic invertebrates occurred in association with N. horrida-P. schweinfurthii community.The results indicated that total suspended solids (TSS), TH and NO2 are the most influential water variables on the distribution of the aquatic macrophyte samples and their invertebrate communities. Also, the study indicates that water variables have a higher impact on the aquatic macrophytes than on the associated invertebrate populations. P, NO3, K, Na, Mg, Cl and DO were the most influential water variables that dictate the distribution of invertebrate groups recorded in the open-water zone. Water temperature, electric conductivity, pH, NO2, SO4−−, SiO3, CO3−− and turbidity have a lesser influence of the distribution of the invertebrates recorded in this zone.  相似文献   

15.
湖滨带水生植物对湖泊生态系统健康的维持具有重要作用。为了解当前洱海湖滨带水生植物现状,本研究于2020—2021年间每季度对洱海湖滨带水生植物进行调查。调查结果表明:(1)洱海湖滨带现有水生植物206种,属56科156属,其中湿生植物149种,挺水植物24种,沉水植物21种,漂浮植物7种,浮叶植物5种;常见种有狗牙根(Cynodon dactylon)、菰(Zizania latifolia)、苦草(Vallisneria natans)、菱(Trapa bispinosa)等,偶见种为忍冬(Lonicera japonica)、披碱草(Elymus dahuricus)等。(2)从区系分布来看,洱海湖滨带物种主要为世界分布(83种)和热带分布(55种)两种类型,分别占总物种数比例的40.28%和26.71%。(3)在植物群落方面,洱海湖滨带共有18个主要植物群落类型,其中湿生植物群落4种,挺水植物群落3种,沉水植物群落9种,浮叶植物群落2种;以狗牙根群落、菰群落、苦草群落、菱群落为主。通过与历史文献结果的对比分析得出,近年来洱海湖滨带水生植物多样性有了显著提高,但目前存在挺水植物群落...  相似文献   

16.
水下光照分布是影响水生态系统的重要因素,研究光合有效辐射衰减特征对于沉水植物恢复具有一定的指导意义.根据沉水植物生物量资料,将东太湖划分为沉水植物茂盛区、沉水植物稀疏区和无植物区3种区域.基于2019年夏季原位水下光场资料,探讨了东太湖光衰减特性和光照衰减因子的空间差异以及不同区域内的主导衰减因子,分析了东太湖的稳态阶段和富营养化水平,并阐述了真光层深度与透明度的关系,以期为东太湖沉水植物恢复和保护提供相关资料.结果表明:东太湖不同区域光衰减特性差异显著,光合有效辐射衰减系数(k d(PAR))在0.73~11.80 m^-1之间变化,真光层深度范围为0.39~6.31 m.不同区域的无机悬浮物和有机悬浮物浓度存在显著性差异,稀疏区叶绿素a浓度显著高于茂盛区,而与无植物区没有显著差异,有色可溶性有机物(CDOM)吸收系数在3种区域无显著性差异.k d(PAR)与无机、有机悬浮物的线性拟合效果较好,而与叶绿素a、CDOM拟合较差.水体吸收和散射作用是茂盛区光衰减的主要原因,无植物区域主导衰减因子仅有无机悬浮物,稀疏区由叶绿素a和无机悬浮物共同主导,是生态修复需要重点关注的区域,有机悬浮物和CDOM对东太湖光照衰减没有太大影响.东太湖目前正处于从草型稳态向藻型稳态过渡的阶段,整个湖泊属于富营养水平,真光层深度大约为透明度的2.7倍.  相似文献   

17.
A theoretical model is derived in which isotopic fractionations can be calculated as a function of variations in dissolved carbonate species on CO2 degassing and calcite precipitation. This model is tested by application to a calcite-depositing spring system near Westerhof, Germany. In agreement with the model,13C of the dissolved carbonate species changes systematically along the flow path. The difference in δ values between the upper and lower part of the stream is about 1‰. The13C content of the precipitated calcite is different from that expected from the theoretical partitioning. The isotopic composition of the solid CaCO3 is similar to that of the dissolved carbonate, though in theory it should be isotopically heavier by about 2.4‰. The18O composition of dissolved carbonate and H2O is constant along the stream. Calculated calcite-water temperatures differ by about +5°C from the observed temperatures demonstrating isotopic disequilibrium between the water and precipitated solid. This is attributed to kinetic effects during CaCO3 deposition from a highly supersaturated solution, in which precipitation is faster than equilibration with respect to isotopes.Plant populations in the water have virtually no influence on CO2 degassing, calcite saturation and isotopic fractionation. Measurements of PCO2, SC and13C within a diurnal cycle demonstrate that metabolic effects are below the detection limit in a system with a high supply-rate of dissolved carbonate species. The observed variations are due to differences in CO2 degassing and calcite precipitation, caused by continuously changing hydrodynamic conditions and carbonate nucleation rates.  相似文献   

18.
More than 600 measurements of the carbon dioxide content of cave air in Belgium lead up to the conclusion that the main factors of its distribution are: (1) a flow originating from the biomass and diffusing in the soil and the voids of bedrock; (2) a trend, discernible in very still air only, to go down by density; (3) in some caves, draughts caused, for instance, by a swift underground stream. Results in Belgium are compared with published and unpublished data from other countries, showing that CO2 is often less abundant in cold climate caves and in caves of semi-arid regions (influence of the biomass). Special attention is paid to human contamination during analyses: the influence of people passing through the cave nearby the operator, but also the influence of the operator himself are discussed, and the use of special precautions (including a CO2-absorbing mask) in defined critical situations is stressed.  相似文献   

19.
Fred Worrall  Tim Burt 《水文研究》2005,19(9):1791-1806
The dissolved CO2 concentration of stream waters is an important component of the terrestrial carbon cycle. This study reconstructs long‐term records of dissolved CO2 concentration for the outlets of two large catchments (818 and 586 km2) in northern England. The study shows that:
  • 1. The flux of dissolved CO2 from the catchments (as carbon per catchment area), when adjusted for that which would be carried by the river water at equilibrium with the atmosphere, is between 0 and 0·39 t km−2 year−1 for the River Tees and between 0 and 0·65 t km−2 year−1 for the River Coquet.
  • 2. The flux of dissolved CO2 is closely correlated with dissolved organic carbon (DOC) export and is unrelated to dissolved CO2 export from the headwaters of the study catchments.
  • 3. The evasion rate of CO2 from the rivers (as carbon per stream area) is between 0·0 and 1·49 kg m−2 year−1, and calculated in‐stream productions of CO2 are estimated as between 0·5 and 2·5% of the stream evasion rate.
  • 4. By mass balance, it is estimated that 8% of the annual flux of DOC is lost within the streams of the catchment.
The study shows that the loss of CO2 from the streams of the Tees catchment is between 3·1 and 7·5 kt year−1 (as carbon) for the River Tees, which is the same order as annual CH4 flux from peats within the catchment and approximately 50% of the net CO2 exchange to the peats of the catchment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Large differences in δ 2H of primary producers between aquatic and terrestrial ecosystems are used to identify subsidies, discriminate organic matter sources, and reduce uncertainty in food web studies. Previous investigations of hydrogen isotope ratios suggest there may be predictable differences between the δ 2H of water and organic matter for different types of primary producers. We define the difference in the net isotopic discrimination between water and bulk organic matter (om) as: ΔH = (δ 2Hom ? δ 2Hwater) ÷ (1 + δ 2Hwater ÷ 1,000). We summarized ΔH values from published literature and we measured the δ 2H of water and primary producers in order to compare ΔH among aquatic and terrestrial primary producers. Measurements were made from three water body types (lake, river, coastal lagoon) and their associated watersheds. Although we predicted a large and equivalent net isotopic discrimination for aquatic primary producers, we found considerable variability among groups of aquatic producers. Macroalgae, benthic microalgae, and phytoplankton had more negative ΔH values (i.e. greater isotopic discrimination) than both aquatic macrophytes and terrestrial vegetation. The more positive δ 2Hom and hence lower ΔH of terrestrial vegetation was expected due to relative increases in the heavier isotope, deuterium, during transpiration. However, the more positive values of δ 2Hom and relatively low ΔH in aquatic macrophytes, even submerged species, was unexpected. Marine macroalgae had high variability in δ 2Hom as a group, but low variability within distinct species. Variability among types of primary producers in δ 2Hom and in ΔH should be assessed when hydrogen is used in isotopic studies of food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号