首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄河伊洛河中下游鱼类多样性及群落结构   总被引:1,自引:0,他引:1  
为了解伊洛河中下游鱼类多样性、群落结构及其与环境因子的关系,于2016年2-12月对伊洛河中下游5个河段开展鱼类多样性及环境调查.共采集鱼类12361尾,43种,隶属于4目9科37属.伊洛河中下游鱼类群落的Shannon-Wiener多样性指数、Margalef丰富度指数、Pielou均匀度指数和Simpson指数变化范围分别为1.75~2.38、2.44~3.63、0.59~0.76和0.73~0.86.各指数均以西草甸河段最高.各河段优势种以(Hemiculter leucisculus)、似鳊(Pseudobrama simoni)、鲫(Carassius auratus)、兴凯鱊(Acheilognathus chankaensis)和鳑鲏属(Rhodeus)等小型或广适性鱼类为主.丰度/生物量比较(ABC)曲线显示,除西草甸河段外,各河段优势鱼类群落均受到不同程度的干扰.其中七里铺和黑石关鱼类群落处于严重干扰状态,以小型鱼类或大型鱼类的幼鱼为主.采用冗余分析方法分析了鱼类群落结构与环境因子的关系,发现除了河床、水流、捕捞等因子以外,氨氮、总磷浓度与pH是导致伊洛河中下游鱼类群落结构差异的主要影响因子.针对伊洛河鱼类多样性现状,建议加强流域水质监管,恢复河流连通性,推进保护区全面禁渔,开展生态修复等以恢复伊洛河河流健康.  相似文献   

2.
The drought of summer 2018, which affected much of Northern Europe, resulted in low river flows, biodiversity loss and threats to water supplies. In some regions, like the Scottish Highlands, the summer drought followed two consecutive, anomalously dry, winter periods. Here, we examine how the drought, and its antecedent conditions, affected soil moisture, groundwater storage, and low flows in the Bruntland Burn; a sub-catchment of the Girnock Burn long-term observatory in the Scottish Cairngorm Mountains. Fifty years of rainfall-runoff observations and long-term modelling studies in the Girnock provided unique contextualisation of this extreme event in relation to more usual summer storage dynamics. Whilst summer precipitation in 2018 was only 63% of the long-term mean, soil moisture storage across much of the catchment were less than half of their summer average and seasonal groundwater levels were 0.5 m lower than normal. Hydrometric and isotopic observations showed that ~100 mm of river flows during the summer (May-Sept) were sustained almost entirely by groundwater drainage, representing ~30% of evapotranspiration that occurred over the same period. A key reason that the summer drought was so severe was because the preceding two winters were also dry and failed to adequately replenish catchment soil moisture and groundwater stores. As a result, the drought had the biggest catchment storage deficits for over a decade, and likely since 1975–1976. Despite this, recovery was rapid in autumn/winter 2018, with soil and groundwater stores returning to normal winter values, along with stream flows. The study emphasizes how long-term data from experimental sites are key to understanding the non-linear flux-storage interactions in catchments and the “memory effects” that govern the evolution of, and recovery from, droughts. This is invaluable both in terms of (a) giving insights into hydrological behaviours that will become more common water resource management problems in the future under climate change and (b) providing extreme data to challenge hydrological models.  相似文献   

3.
D. J. Booker 《水文研究》2003,17(3):577-599
In urban rivers, flow regime and channel morphology are the drivers of physical habitat quality for aquatic species. Peak discharges are increased at high flows as a result of impermeable catchments and channel engineering for flood protection schemes. Hazardous conditions and flashy hydrographs mean that measurement of velocities at high flows is a difficult task. This research uses a three‐dimensional computational fluid dynamics (3D‐CFD) model to simulate hydraulic patterns in two urban river channels. A 3D‐CFD code, called SSIIM, was used to simulate hydraulic conditions in two engineered river reaches of the River Tame, Birmingham, UK. These two sites represent channels with different levels of engineering. Models were calibrated and tested using field measurements. Results show that modelled water surface levels and velocity profiles are well simulated. Calibrated roughness heights are compared with those derived from field measurement of sediment size. Numerical experiments are used to assess the relationship between grid resolution in the vertical dimension and the form of the modelled velocity profiles. Biologists have used laboratory experiments to determine maximum sustainable swimming speeds (MSSS) of fish, often in order to assess what level of a particular pollutant may be tolerable. In this work, simulations of high‐flow hydraulic patterns are used to compare velocity patterns with fish MSSS. Results show that when the water levels rise to fill the first channel of the two‐stage channels at the sites, which occurred 16 times in 2000, MSSS are surpassed in the majority of available habitat, suggesting that excessive velocities at high flows are one factor that limits fish habitat. A comparison between the two reaches shows that there is less available habitat in the more modified reach. Conclusions suggest that an approach that integrates water quality issues and physical channel characteristics must be taken in river rehabilitation schemes, as improvements to water quality alone may not be sufficient to improve habitat quality to the desired level. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Juvenile north-temperate and Arctic fishes are faced with trade-offs between energy allocation to growth and energy storage (primarily lipids) prior to over-wintering. We determined classical morphometric (fork length, body weight and condition factor) and biochemical (whole body triglycerides, muscle RNA/DNA ratio, muscle proteins) measures of growth and condition in individual young-of-the-year (YOY) Arctic grayling (Thymallus arcticus). Grayling were collected just prior to over-wintering in late August (approximately 50 days after swim-up) from two natural streams and five locations within a 3.4 km long artificial stream constructed as a fish habitat compensation project and diversion channel for the diamond mining industry in Northwest Territories, Canada (64°45′N). Fork lengths, body weights and whole body triglyceride levels in grayling collected from all sites along the artificial stream were significantly lower than fish collected from one of the natural streams. Condition factor (weight-at-length) was not different among grayling collected from natural and artificial streams. Muscle proteins were lower in grayling collected from four sites along the artificial stream compared to the natural streams. In contrast, muscle RNA/DNA ratios were greater in grayling collected from two sites in the artificial stream compared to natural streams. There were no consistent differences in any variable among grayling collected at the five artificial stream sites or among grayling collected from the two natural streams. The higher RNA/DNA ratios and lower fork lengths, whole body triglycerides and muscle proteins in grayling inhabiting the artificial stream are consistent with energy still being primarily allocated to growth in these fish at this late stage of summer. Individuals that are both larger and possess greater energy storage in the form of triglycerides are more likely to survive the long over-wintering period at this latitude. Our results suggest that YOY grayling using the artificial stream as nursery habitat will likely face increased over-winter mortality, thus raising concerns over the use of fish presence, spawning and rearing as criteria for the initial success of artificial streams as habitat compensation measures in Arctic tundra regions. Further research is needed to determine the potential consequences of reduced size and energy storage in juvenile fishes in order to assess the viability of stream fish habitat compensation and restoration projects associated with industrial development in Arctic tundra regions.  相似文献   

5.
6.
Abstract

Effective environmental flow management depends on identification of ecologically-relevant flow attributes to maintain or restore flows in the context of other natural and human influences on stream ecosystems. This study in subtropical eastern Australia identified associations of fish with climatic and flow gradients, catchment topography, reach geology, habitat structure and land use across 20 catchments. Land-use patterns and associated stressors accounted for very little variation in fish assemblage structure. Of the 35 fish species analysed, 24 were strongly associated with gradients in mean daily flows and their variability, baseflow, number of zero-flow days and high-flow pulses, magnitude of the 1-year annual return interval flood and the constancy and predictability of monthly flows. The finding that 22 species (benthic and pelagic) were associated with gradients of antecedent low-flow hydrology indicates that these species (or functional trait groups) should be the focus of further analysis to explore hydro-ecological relationships in systems with regulated flow regimes.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

7.
随着人类活动对自然生态系统的负面影响不断加剧,无创性生物多样性评估变得越来越重要。本研究旨在利用环境DNA宏条形码技术研究赣江下游南昌段鱼类多样性,并从不同季节(春、夏、秋、冬)、不同水层(上层、中层和下层)和不同取样位置(近岸和离岸)比较鱼类环境DNA信息的物种组成和多样性。结果表明:利用环境DNA宏条形码技术在赣江下游南昌段检测到鱼类114种,其中83种为历史记录种。不同季节的鱼类环境DNA信息的多样性和组成显示出极显著差异。上层水检测到的鱼类物种数分别显著多于中层水和下层水,且中层水和下层水检测到的鱼类在上层水中绝大多数都被检测到。上层水、中层水和下层水的鱼类环境DNA信息的多样性和组成不具有显著性差异。近岸检测到鱼类物种数多于离岸的,鱼类多样性指数无显著性差异,但群落结构具有显著性差异。RDA分析表明,赣江下游鱼类环境DNA受温度和pH的影响较大。本研究能够为基于环境DNA宏条形码的赣江鱼类资源的调查提供基线数据,并对后续赣江鱼类资源环境DNA宏条形码监测实施不同目的的采样策略提供依据;可为使用环境DNA宏条形码技术研究流水系统鱼类多样性提供技术参考,为环境DNA宏条形码技术应...  相似文献   

8.
This paper explores changes in suspended sediment transport and fine sediment storage at the reach and patch scale associated with the reintroduction of partial large wood (LW) jams in an artificially over‐widened lowland river. The field site incorporates two adjacent reaches: a downstream section where LW jams were reintroduced in 2010 and a reach immediately upstream where no LW was introduced. LW pieces were organized into ‘partial’ jams incorporating several ‘key pieces’ which were later colonized by substantial stands of aquatic and wetland plants. Reach‐scale suspended sediment transport was investigated using arrays of time‐integrated suspended sediment samplers. Patch‐scale suspended sediment transport was explored experimentally using turbidity sensors to track the magnitude and velocity of artificially generated sediment plumes. Fine sediment storage was quantified at both reach and patch scales by repeat surveys of fine sediment depth. The results show that partial LW jams influence fine sediment dynamics at both the patch and reach scale. At the patch‐scale, introduction of LW led to a reduction in the concentration and increase in the time lag of released sediment plumes within the LW, indicating increased diffusion of plumes. This contrasted with higher concentrations and lower time lags in areas adjacent to the LW; indicating more effective advection processes. This led to increased fine sediment storage within the LW compared with areas adjacent to the LW. At the reach‐scale there was a greater increase in fine sediment storage through time within the restored reach relative to the unrestored reach, although the changes in sediment transport responsible for this were not evident from time‐integrated suspended sediment data. The results of the study have been used to develop a conceptual model which may inform restoration design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Organochlorines and organophosphates were measured in four fish species (Lateolabrax japonicus, Pagrasomus major, Miichthys miiuy and Epinephalus awoara) and the mussel Perna viridis collected from aquaculture cages in coastal waters of Xiamen, China. Polycyclic aromatic hydrocarbon (PAH) metabolites were also measured in fish bile. Sites in Xiamen coastal waters (the harbour, Maluan and Tongan) are compared with a "cleaner" reference site at Dongshan Island. DDT was found in livers of all fish sampled (May 1998, 1999 and December 1999) ranging from 0.15 to 2.2 microg/g WW, but levels in muscle tissue (<0.5 ng/g to 0.22 microg/g WW) were at least an order of magnitude lower in the harbour, and were not detectable (<0.5 ng/g) in Tongan samples. All other pesticides examined were not detected in fish or mussels, except for dieldrin in one liver sample (0.07 microg/g WW). Food of the caged fish, small fish and dried pellets, had very low (0.015-0.027 microg/g WW) or non-detectable levels of DDT, indicating significant bioaccumulation of contaminants in caged fish and/or other possible sources of uptake (water and sediments). DDT levels in fish varied with species. DDT contamination in fish livers and whole mussels varied significantly with location. Highest concentrations in fish occurred in the harbour, and less consistently so in Tongan. Dongshan and Maluan had comparatively low levels of DDT. Relatively low residues of DDT in both fish and mussels at Dongshan likely reflect lower levels of pesticide input at this reference site. However, the low levels of DDT contamination in fish tissues from Maluan were unexpected in view of the close proximity of the harbour and possibly reflect the removal of particulate-bound contaminants by the intensive bivalve culture there. Consistently high proportions of DDT in the form of the parent compound (p,p'-DDT: fish 30-45%; mussels 40-65%) from all sites suggest recent releases of this chemical to the environment. Levels of two main groups of PAH metabolites (naphthalene and phenanthrene) in fish bile suggest a different environmental distribution pattern than that of pesticides, in that Dongshan fish appear to be no less exposed to hydrocarbons than those from Xiamen coastal waters.  相似文献   

10.
Irrigation activities alter water distribution and storage in arid and semi-arid regions worldwide. The removal of water from streams can drastically impact instream flows. However, irrigation water conveyance and application onto fields can create surface and subsurface hydrologic connections, or lateral inflows, that return some of this diverted water back to streams. Prior research has shown the impact of surface water diversions from streams on downstream warming that increases stress on aquatic species. However, the combined effects of flow depletion and irrigation-enhanced lateral inflows on stream temperature and river ecosystems remains poorly studied. To further understand these relationships, we combined intensive field monitoring over three irrigation seasons and thermal aerial imagery to identify irrigation-enhanced subsurface lateral inflow locations and evaluate their effects on stream flow and temperature patterns over a 2.5-km highly depleted study reach. Considering variable hydrology, weather, flow diversions, channel geometry and lateral inflows, we found irrigation-enhanced lateral inflows were the likely explanation for buffered longitudinal and diel warming patterns that prevented stressful or lethal thermal conditions for brown trout. These localized temperature effects were more pronounced in drier years, under high diversion rates and during high solar radiation intensity. We also found that lateral inflows corresponded with greater spatial variability of stream temperatures and potential thermal refugia. Study results illustrate the potential ecological consequences of reducing irrigation-enhanced lateral inflows and highlight the importance of hydrologic monitoring in irrigated arid river valleys. The role and preservation of these lateral inflows should be considered in water resources management related to irrigation efficiency and environmental flows.  相似文献   

11.
Groundwater dynamics play an important role in runoff generation and hydrologic connectivity between hillslopes and streams. We monitored a network of 14 shallow groundwater (GW) wells in a 3.2 km2 experimental catchment in the Scottish Highlands. Wells were placed in three contrasting landscape units with different hydropedological characteristics and different topographic positions relative to the stream network, encompassing a catena sequence from freely draining podzols on steeper hillslopes to increasingly thick peats (histosols) in the valley bottom riparian zone. GW dynamics were characterized by statistical analyses of water table fluctuations, estimation of variabilities in lag times and hysteresis response in relation to streamflow. The three landscape units had distinct storage–discharge relationships and threshold responses with a certain GW level above which lateral flow dominates. Steeper hillslopes with freely draining podzols were characterized by GW fluctuations of around 150 cm in the underlying drift. GW usually showed peak response up to several hours after stream flow. During persistent wet periods the water table remained in the soil profile for short spells and connected shallow flow paths in the near surface horizons to the lower hillslopes. In the peaty gleys in the lower foot slopes, GW was characterized by a water table generally within 20 cm of the soil surface, though at some locations this could fall to 50 cm in extreme dry periods. GW responses were usually a few hours prior to the stream responses. In riparian peats, the water table was also usually less than 20 cm deep and responded several hours before the stream. These riparian peat soils remain at, or very near saturation with near‐continuous GW–surface water connectivity. In contrast, the steeper slopes remain disconnected for prolonged periods and need large recharge events to overcome storage thresholds. GW responses vary seasonally, and landscape controls on the spatial organization of GW dynamics are strongest at low flows and in small events. During wettest periods, limited storage and extensive saturation weaken such controls. This study demonstrated that montane catchments can have highly dynamic GW stores, which are important in generating both storm flows and baseflows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
14.
We assessed the effectiveness of pulse flows in facilitating the upstream migration of an imperiled summer-run Chinook salmon (Oncorhynchus tshawytscha) stock in the Puntledge River, BC, Canada. During July and August, over 3 years, we tracked radio-tagged fish (n = 100) in a reach of the Puntledge River where water is diverted for power generation, resulting in stable low flows that are believed to impede migration. Over the course of  13 pulse flows, we measured migration rate, passage rate at natural barriers that are difficult to pass during low flows, movement away from the turbine outlet pool that creates distracting flows, and locomotor activity. Mean river flow during the peak of the pulses varied from 12.1 to 42.5 m3 s?1 and was at least 6.1 m3 s?1 above residual base flows. Typically, the pulse flows lasted 48 h. Migration rate was higher during some pulse flows, but results varied among pulses. Passage at natural barriers was only higher during an abnormal pulse where flows reached twice that of the prescribed flow (i.e., 24+ m3 s?1). Some fish moved away from the turbine outlet pool during pulse flows. Pulse flows did not affect fish activity levels, as measured by electromyogram telemetry. Although the effect of pulsed flows on the migration of the Puntledge River summer-run Chinook salmon was unclear, no negative impacts, such as hyperactivity or downstream displacement were observed. The use of pulse flows as a management tool still requires further research.  相似文献   

15.
Novel modelling was utilised in the present study to reveal significant relationships between the abundance of the Australian freshwater stream-specialist fish Galaxias olidus and metrics defining flow regimes across a region dominated by temporary streams. It was revealed that increases in total abundance were linked to metrics (both 1- and 3-year periods) that indicate greater water availability and the persistence of water in pools across the year, namely the average duration of zero-flow days over the low-flow season (negatively) and total duration of bankfull flows across the year (positively). The analysis identified 3-year metrics as being more important to the abundance of 0+ fish rather than annual ones. Taken together, these findings describing the flow requirements of a stream specialist will help to guide implementation of environmental flows, but will also highlight the need for continued exploration of flow–ecology relationships.  相似文献   

16.
Sewage effluent is a powerful agent of ecological change in estuaries. While the effects of sewage pollution on water quality are usually well documented, biological responses of exposed organisms are not. We quantified health impacts in the form of pathological tissue changes across multiple organs in estuarine fish exposed to elevated levels of treated wastewater. Structural pathologies were compared in wild populations of four fish species from two subtropical estuaries on the east coast of Australia that differ substantially in the amount of direct wastewater loadings. Uptake of sewage-derived nitrogen by fish was traced with stable nitrogen isotopes. Pathologies were common in the liver, spleen, gill, kidney and muscle tissues, and included granulomas, melanomacrophage aggregates, and multiple deformities of the gill epithelia. Tissue deformities were more frequent in fish exposed directly to wastewater discharges. Mullet (Valamugil georgii) were most affected, with only a single specimen free of pathologies in the sewage-impacted estuary. Similarly, in those fish that had structural abnormalities, more deformities were generally found in individuals from sites receiving sewage. These spatial contrasts in impaired fish health correspond to significantly enriched delta15N values in fish muscle as a consequence of fish assimilating sewage-N. Overall, the pattern of lower health and enriched delta15N values in fish from sewage-impacted areas suggests that organism health is lowered by sewage inputs to estuaries. Measurements of organism health are required to understand the effects of sewage on estuarine ecosystems, and histopathology of fishes is a powerful tool to achieve this.  相似文献   

17.
Stream‐tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach‐integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS‐P. Transient storage modelling results were compared with direct observations to evaluate the reliability of the TSM. Results from the tracer injection in the bedrock reach supported the assumption that most transient storage in headwater mountain streams results from hyporheic exchange. Direct observations from the well networks in colluvial reaches showed that subsurface flow paths tended to parallel the valley axis. Cross‐valley gradients were weak except near steps, where vertical and cross‐valley hydraulic gradients indicated a strong potential for stream water to downwell into the hyporheic zone. The TSM parameters showed that both size and residence time of transient storage were greater in reaches with a few large log‐jam‐formed steps than in reaches with more frequent, but smaller steps. Direct observations showed that residence times in the unconstrained stream were longer than in the constrained stream and that little change occurred in the location and extent of the hyporheic zone between low‐ and high‐baseflow discharges in any of the colluvial reaches. The transient storage modelling results did not agree with these observations, suggesting that the TSM was insensitive to long residence‐time exchange flows and was very sensitive to changes in discharge. Disagreements between direct observations and the transient storage modelling results highlight fundamental problems with the TSM that confound comparisons between the transient storage modelling results for tracer injections conducted under differing flow conditions. Overall, the results showed that hyporheic exchange was little affected by stream discharge (at least over the range of baseflow discharges examined in this study). The results did show that channel morphology controlled development of the hyporheic zone in these steep mountain stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Upwelling flows in the Earth's mantle are accompanied by mass, momentum and energy transports from deep to upper layers. Those flows beneath the mid-ocean ridges give rise to sea-floor spreading. Mantle plumes, on the other hand, cause hot spots to be formed on the Earth's surface. Using the basic equations of fluid dynamics, temperature and velocity distributions in two-dimensional upwelling and cylindrical plumes can be obtained by an integral-relation method. Then the mass, momentum and energy transported to the lithosphere by these upwelling flows can readily be calculated. Based on those results we can more thoroughly discuss problems of plate dynamics, such as the driving mechanism of plate motion, the causes of formation of rift valleys over mid-ocean ridges, and the effect of mantle plumes on sea-floor spreading.  相似文献   

19.
We used carbon and nitrogen stable isotope analyses to assess the relative contributions from pelagic and littoral energy sources to higher trophic levels in a lake ecosystem before and after a major food web perturbation. The food web structure of the lake was altered when the population sizes of the most abundant fish species (small perch, roach and bream) were reduced during an attempt to improve water quality by biomanipulation. Fish removal was followed by dense year classes of young fish, which subsequently increased the utilisation of pelagic resources. This was reflected as a decrease in relative energy contribution from littoral sources and also led to more distinct pelagic and littoral food chains after fish removal. Community metrics calculated from stable isotope data indicated increased trophic diversity and occupied niche area, and reduced trophic redundancy in the food web. However, only minor changes were observed in fish trophic positions, although roach and pike occupied slightly lower trophic positions after fish removal. Despite the Jyväsjärvi ecosystem becoming more dependent on pelagic energy after fish removals, the littoral energy contribution was still substantial, particularly to certain fish species. Hence, our results support recent arguments for the importance of benthic production in lake ecosystems. More generally, our results illustrate how large-scale perturbations of food web structure can alter energy flow patterns through an entire ecosystem.  相似文献   

20.
Concentration–discharge (C-Q) relationships are an effective tool for identifying watershed biogeochemical source and transport dynamics over short and long timescales. We examined stormflow C-Q, hysteresis, and flushing patterns of total suspended sediment (TSS) and soluble reactive phosphorus (SRP) in two stream reaches of a severely impaired agricultural watershed in northeastern Wisconsin, USA. The upper watershed reach—draining a relatively flat, row crop-dominated contributing area—showed predominantly anti-clockwise TSS hysteresis during storms, suggesting that particulate materials were mobilized more from distal upland sources than near- and in-channel areas. In contrast, the incised lower watershed reach produced strong TSS flushing responses on the rising limb of storm hydrographs and clockwise hysteresis, signalling rapid mobilization of near- and in-channel materials with increasing event flows. C-Q relationships for SRP showed complex patterns in both the upper and lower reaches, demonstrating largely non-linear chemodynamic C-Q behaviour during events. As with TSS, anti-clockwise SRP hysteresis in the upper reach suggested a delay in the hydrologic connectivity between SRP sources and the stream, with highly variable SRP concentrations during some events. A broad range of clockwise, anti-clockwise, and complex SRP hysteresis patterns occurred in the lower watershed, possibly influenced by in-channel legacy P stores and connection to tile drainage networks in the lower watershed area. Total suspended sediment and SRP responses were also strongly related to precipitation event characteristics including antecedent precipitation, recovery period, and precipitation intensity, highlighting the complexity of stormflow sediment and phosphorus responses in this severely impaired agricultural stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号