首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.

A new chemically mutagenic mutant ofSynechococcus PCC7942 named high-CO2 requiring mutant, which could grow at 4% CO2 but could not grow at air levels of CO2, was isolated. Comparative studies on some physiological aspects of the mutant and high-CO2 growing cells (growing at 4% CO2) were conducted. The result showed that the mutant had lower growing rate, about 1/40th photosynthetic affinity to inorganic carbon, 25% lower carbonic anhydrase (CA) activity, lower quenching rate of chlorophyll fluorescence, and about 1/2 alkalinization rate of the medium. The CA activity responses of the two types of cells to different concentration of CO2 were determined. Upon the addition, of inorganic carbon (Ci), the rate of active Ci uptake described by the rate of chlorophyll fluorescence quenching of the mutant was obviously lower compared with that of the high-CO2 growing cells; the size of the internal inorganic carbon pool size detemined by the extent of fluorescence quenching of the mutant was also smaller.

  相似文献   

2.
Promoting active travel behavior and decreasing transport-related carbon dioxide (CO2) emissions have become a priority in many Chinese cities experiencing rapid urban sprawl and greater automobile dependence. However, there are few studies that holistically examine the physical and social factors associated with travel CO2 emissions. Using a survey of 1525 shoppers conducted in Shenyang, China, this study estimated shopping-related travel CO2 emissions and examined how the built environment and individual socioeconomic characteristics contribute to shopping travel behavior and associated CO2 emissions. We found that, firstly, private car trips generate nearly eight times more carbon emissions than shopping trips using public transport, on average. Second, there was significant spatial autocorrelation with CO2 emissions per trip, and the highest carbon emissions were clustered in the inner suburbs and between the first and second circumferential roads. Third, shopping travel CO2 emissions per trip were negatively correlated with several built environment features including population density, the quantity of public transport stations, road density, and shop density. They were also found to be significantly related to the individual socio-economic characteristics of car ownership, employment status, and education level using a multinomial logistic regression model. These empirical findings have important policy implications, assisting in the development of measures that contribute to the sustainability of urban transportation and meet carbon mitigation targets.  相似文献   

3.
The eutrophication, hypoxia and coastal acidification are attracting more and more attention. In this study, inorganic carbon parameters, including dissolved inorganic carbon (DIC), total alkalinity (TA) and calculated partial pressure of CO2 (pCO2), obtained from a summer cruise in August, 2009, were used to investigate their integrated response to biological processes accompanying the oxygen depletion in the areas off the Changjiang Estuary. According to the observations, the typical hypoxia occurred in the bottom water just outside the Changjiang Estuary with Dissolved Oxygen (DO) lower than 2.00 mg L?1. The biological uptake in the surface water and the decomposition of organic matter in the bottom water were fully coupled with each other. The high concentration of Chl_a (Chl_a = 10.9 μg L?1) and DO (9.25 mg L?1), profoundly decreased DIC concentration (1828 μmol kg?1) and elevated pH (8.42) was observed in the surface water. The correspondingly increased DIC and depletion of oxygen were observed in the bottom water. The semi-quantitative analysis proved that the locally-produced phytoplankton, determined by primary productivity, was deposited to the bottom and contributed about 76% of total amount of the organic carbon decomposition in the bottom. However, in the bottom hypoxia (DO = 2.05 mg L?1) area observed in the Southern Zhejiang coastal water, the responding patterns of inorganic carbon parameters deviated from the previous one. The expanding of Changjiang Diluted Water (CDW), the adding of Hangzhou Bay water (with high DIC concentration) and Coastal Current together modify the DIC background value in this area, and the local degeneration and upwelling process may also help to offset the local DIC removed by net biological uptake in surface water. In addition, when the mixing occurring in autumn, which may break the summer stratification, the excess release of high DIC in the bottom water to the subsurface water could have an important influence on coastal acidification and the CO2 uptake capacity in this area.  相似文献   

4.
The aim of this study was to investigate the effects of light intensity and enhanced nitrogen supply on the growth and photosynthesis of the green-tide macroalga, Ulva prolifera. Thalli of U. prolifera were grown in natural or NH 4 +-enriched seawater under two different light intensities for 7 days, and then the growth rate, pigmentation, and photosynthetic performance of the thalli were evaluated. The results show that the relative growth rate(RGR) was markedly higher under the high light level than under the low light level. Enrichment with NH 4 + enhanced the RGR under high light intensity, but did not affect RGR under low light intensity. In low light conditions, NH 4 +-enrichment resulted in a marked decrease in the maximal photosynthetic rate( P m) and the maximum carbon fixation rate( V max), but it did not affect the half saturation constant for carbon( K 0.5) or the ratio of V max to K 0.5, which reflects the carbon acquisition efficiency. In high light conditions, P m, K 0.5, and the dark respiration rate( R d) increased under NH 4 + enrichment, but V max and the V max / K 0.5 ratio decreased. Regardless of the light intensity, NH 4 +-enrichment did not affect the apparent photosynthetic efficiency( α), which refl ects the ability of the alga to use light energy at low light levels. Under both low and high light intensities, the chlorophyll a(Chl a), chlorophyll b(Chl b), and carotenoids(Car) contents in thalli were higher in NH 4 +-enriched than in natural seawater, except that there was a decrease in the Chl b content of thalli in NH 4 +-enriched seawater under low light intensity. Therefore, NH 4 + enrichment improved the growth and photosynthetic performance of U. prolifera under high light intensity, but not under low light intensity. We discuss the possible mechanisms underlying these physiological responses.  相似文献   

5.
This paper uses the Global Trade Analysis Project(version 7)database to calculate embodied CO2emissions in bilateral trade between China and other countries(regions)based on input-output methods.The sources and flows of embodied CO2emissions in import and export trade of China are analyzed.Results show that the flows of embodied CO2emissions in export trade are highly concentrated.The main flows to the United States(US)and Japan account for 1/4 and 1/7 of the total CO2emissions in export trade,respectively.Concentrated flows of total exports and small differences in export structure are the main reasons for the highly concentrated export trade.The sources of embodied CO2emissions in import trade have relatively low concentration.Taiwan Province of China,Hong Kong Special Administrative Region of China,US,Russia,Republic of Korea,and Japan account for around 7.72%–12.67%of the total embodied CO2emissions in import trade.The relative dispersion of import sources,the impact of the import structure,and the level of production technology in importing countries caused low concentration of CO2emissions in import trade.Overall,the embodied CO2emissions in the export trade of China are higher than those in import trade.As a result,production-based CO2emissions are higher than consumption-based CO2emissions.The difference of 8.96×108t of CO2,which comes mainly from the US,Japan,Germany,and the United Kingdom,accounts for 58.70%of the total difference.Some suggestions,such as improving energy efficiency,alerting high carbon-intensive industries transfer,expanding the market for sharing risks,and prompting the accounting system of consumption-based CO2emissions,are proposed based on the results.  相似文献   

6.
CARBON CYCLE OF MARSH IN THE SANJIANG PLAIN   总被引:1,自引:0,他引:1  
Peat~hisaprocessofbeinghelpfulfordecreasingtheincrementofopcontentintheair,whichiscausedbycombustionofdineralfuelsandhumanactivitiesinterrestrialecosystem.But,exploitingrnaxsh,eSPeCiallyPeatedtObefuels,impliesthatorgbocsubstanceaccUInulatedfroma~hereduringthepastthousandsofyearsisrapidlyOxidized.aamthemarShplaysanimPOrtantroleinthecycleofbiogaxhdristry.TheSanjiangPlainisalowplainformedbythecommonreactionoftheHeilongRiver,SonghuaherandWUSuliabover.Thetotalareais10.89X104klnZandmarsharea…  相似文献   

7.
Inorganic carbon utilization in the non-calcifying marine microalgae,Nannochloropsis oculata, Phaeodactylum tricornutum andPorphyridium purpureum was compared with high- and low-calcifying strains ofEmiliania huxleyi grown in artificial seawater medium aerated with either air (0.03% V/V CO2) or CO2-free air. For high-calcifying strain ofE. oculata andP. tricornutem, similar growth patterns were observed in air-and CO2-free air-grown cultures.P. purpureum showed a less final cell density in CO2-free air than in air-grown culture. However, low-calcifying strain ofE. huxleyi was able to grow only in air-grown culture, but not in CO2-free air-grown culture. Measurements of alkalinity, pH, concentration of dissolved inorganic carbon (DIC) and free CO2 showed different patterns of DIC utilization. WithN. oculata, P. tricornutum andP. purpureum the pattern of DIC utilization was characterized by an increase of pH and a decrease of DIC but a constant alkalinity in the cultures aerated with air or CO2-free air, suggesting that bicarbonate utilization was concomitant with an efflux of OH. Both alkalinity and pH were maintained rather constant in air-grown culture of low-calcifying strain ofE. huxleyi, suggesting that diffusive entry of CO2 could meet the requirement of DIC for its photosynthesis and growth. High-calcifying strain ofE. huxleyi, however, showed a pattern of decrease of alkalinity and DIC but an almost constant pH, indicating that bicarbonate was the major form of inorganic carbon utilised by this organism and bicarbonate uptake is unlikely to be accompanied by an efflux of OH. The final pH values reached byN. oculata, P. tricornutum andP. purpureum in a closed system were 10.75, 10.60 and 9.85 respectively, showing that bicarbonate utilisation is concomitant with an efflux of OH. While the final pH of 8.4 in high-calcifyingE. huxleyi suggests that bicarbonate utilization was not accompanied by an efflux of OH. Contribution No. 3557 from the Institue of Oceanology, Chinese Academy of Sciences. This work was supported by NERC grant GRE3/7853 U. K. and partly supported by Bio-Engineering Center, SSTC 96-C01-05-01.  相似文献   

8.
This study assesses potential effects of adaption to climate change in the future as a carbon related value using a baseline and credit approach, considering the implementation of the Reducing Emissions from Deforestation and forest Degradation(REDD) mechanism. Basic data were obtained for implementing the REDD mechanism in the Democratic People's Republic of Korea(DPRK) for scientific decision-making to prevent deforestation and forest degradation. The potential effects according to the implementation of the REDD mechanism in the DPRK based on forest status data(the latest) are as follows. If the deforestation rate is reduced to a level below 6% through a 20-year REDD mechanism beginning in 2011, 0.01–11.64 C-tons of carbon credit per ha could be issued for DPRK. Converted into CO?-tons per ha, this amounts to 0.03–42.68 CO?-tons, which translates to a minimum of 226,000 CO?-tons and a maximum of 289,082,000 CO?-tons overall for forests in DPRK. In terms of carbon price, this measures up to 1.10 million USD–1.4 billion USD, considering that the REDD carbon price in voluntary carbon markets in 2010 was around 5 USD.  相似文献   

9.
10.
It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.  相似文献   

11.
Measurements of pH,total alkalinity(TA),partial pressure of CO2(pCO2) and air-sea CO2 flux(FCO2) were conducted for the inner continental shelf of the East China Sea(ECS) during August 2011.Variations in pCO2 distribution and FCO2 magnitude during the construction of the Three Gorges Dam(TGD)(2003-2009),and the potential effects of the TGD on the air-sea CO2 exchange were examined.Results showed that the ECS acts as an overall CO2 sink during summer,with pCO2 ranging from 107 to 585 μatm and an average FCO2 of-6.39 mmol/(m2·d).Low pCO2(<350 μatm) levels were observed at the central shelf(28°-32°N,123°-125.5°E) where most CO2-absorption occurred.High pCO2(>420 μatm) levels were found in the Changjiang estuary and Hangzhou Bay which acted as the main CO2 source.A negative relationship between pCO2 and salinity(R2=0.722 0) in the estuary zone indicated the predominant effect of the Changjiang Diluted Water(CDW) on the seawater CO2 system,whereas a positive relationship(R2=0.744 8) in the offshore zone revealed the influence of the Taiwan Current Warm Water(TCWW).Together with the historical data,our results indicated that the CO2 sink has shown a shift southwest while FCO2 exhibited dramatic fluctuation during the construction of the TGD,which is located in the middle reaches of the Changjiang.These variations probably reflect fluctuation in the Changjiang runoff,nutrient import,phytoplankton productivity,and sediment input,which are likely to have been caused by the operations of the TGD.Nevertheless,the potential influence of the TGD on the CO2 flux in the ECS is worthy of further study.  相似文献   

12.
Cells of Haematococcus pluvialis Flot. et Will were collected in four different growth phases. We quantified the initial and total enzyme activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) in crude extracts, and the relative expression of large-subunit ribulose-1,5-bisphosphate caboxylase / oxygenase (rbcL) mRNA. We measured the ratio of photosynthetic rate to respiration rate (P/R), maximal effective quantum yield of photosystem II (Fv/Fm), electron transport rate (ETR), actual photochemical efficiency of PSII in the light (ΦPSII), and non-photochemical quenching (NPQ). Green vegetative cells were found to be in the most active state, with a relatively higher P/R ratio. These cells also displayed the lowest NPQ and the highest Fv/Fm, ETR, and ΦPSII, indicating the most effective PSII. However, both Rubisco activity and rbcL mRNA expression were the lowest measured. In orange resting cysts with relatively lower P/R and NPQ, Rubisco activity and rbcL expression reached a peak, while Fv/Fm, ETR, and ΦPSII were the lowest measured. Taking into account the methods of astaxanthin induction used in industry, we suggest that Rubisco may participate in astaxanthin accumulation in H. pluvialis. A continuous and sufficient supply of a carbon source such as CO2 may therefore aid the large scale production of astaxanthin.  相似文献   

13.
The process-oriented model Forest-DNDC describing biogeochemical cycling of C and N and GHGs (greenhouse gases) fluxes (CO2, NO and N2O) in forest ecosystems was applied to simulate carbon sequestration and GHGs emissions in Abies fabric forest of the Gongga Mountains at southeastern edge of the Tibetan Plateau. The results indicated that the simulated gross primary production (GPP) of Abies fabric forest was strongly affected by temperature. The annual total GPP was 24,245.3 kg C ha^-1 yr^-1 for 2005 and 26,318.8 kg C ha^-1 yr^-1 for 2006, respectively. The annual total net primary production (NPP) was 5,935.5 and 4,882.2 kg C ha^-1 yr^-1 for 2005 and 2006, and the annual total net ecosystem production (NEP) was 4,815.4 and 3,512.8 kg C ha^-1 yr^-1 for 2005 and 2006, respectively. The simulated seasonal variation in CO2 emissions generally followed the seasonal variations in temperature and precipitation. The annual total CO2 emissions were 3,109.0 and 4,821.0 kg C ha^-1 yr^-1 for 2005 and 2006, the simulated annual total N2O emissions from forest soil were 1.47 and 1.36 kg N ha^-1 yr^-1 for 2005 and 2006, and the annual total NO emissions were 0.09 and o.12 kg N ha^-1 yr^-1 for 2005 and 2006, respectively.  相似文献   

14.
In order to study the diurnal variation of soil CO_2 efflux from temperate meadow steppes in Northeast China, and determine the best time for observation, a field experiment was conducted with a LI-6400 soil CO_2 flux system under five typical plant communities(Suaeda glauca(Sg), Chloris virgata(Cv), Puccinellia distans(Pd), Leymus chinensis(Lc) and Phragmites australis(Pa)) and an alkali-spot land(As) at the meadow steppe of western Songnen Plain. The results showed that the diurnal variation of soil CO_2 efflux exhibited a single peak curve in the growing season. Diurnal maximum soil respiration(Rs) often appeared between 11:00 and 13:00, while the minimum occurred at 21:00–23:00 or before dawn. Air temperature near the soil surface(Ta) and soil temperature at 10 cm depth(T10) exerted dominant control on the diurnal variations of soil respiration. The time-windows 7:00–9:00 could be used as the optimal measuring time to represent the daily mean soil CO_2 efflux at the Cv, Pd, Lc and Pa sites. The daily mean soil CO_2 efflux was close to the soil CO_2 efflux from 15:00 to 17:00 and the mean of 2 individual soil CO_2 efflux from 15:00 to 19:00 at the As and Sg sites, respectively. During nocturnal hours, negative soil CO_2 fluxes(CO_2 downwards into the soil) were frequently observed at the As and Sg sites, the magnitude of the negative CO_2 fluxes were 0.10–1.55 μmol/(m~2·s) and 0.10–0.69 μmol/(m~2·s)at the two sites. The results implied that alkaline soils could absorb CO_2 under natural condition, which might have significant implications to the global carbon budget accounting.  相似文献   

15.
Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoigê al-pine wetland, Qinghai-Tibet Plateau, which is one of the most important peatlands in China. Through incubation ex-periment, this paper studied the effects of temperature, soil moisture, soil type (marsh soil and peat soil) and their in-teractions on CO2 and CH4 emission rates in Zoigê alpine wetland. Results show that when the temperature rises from 5℃ to 35℃, CO2 emission rates increase by 3.3-3.7 times and 2.4-2.6 times under non-inundation treatment, and by 2.2-2.3 times and 4.1-4.3 times under inundation treatment in marsh soil and peat soil, respectively. Compared with non-inundation treatment, CO2 emission rates decrease by 6%-44%, 20%-60% in marsh soil and peat soil, respec-tively, under inundation treatment. CO2 emission rate is significantly affected by the combined effects of the tempera-ture and soil type (p < 0.001), and soil moisture and soil type (p < 0.001), and CH4 emission rate was significantly af-fected by the interaction of the temperature and soil moisture (p < 0.001). Q10 values for CO2 emission rate are higher at the range of 5℃-25℃ than 25℃-35℃, indicating that carbon mineralization is more sensitive at low temperature in Zoigê alpine wetland.  相似文献   

16.
The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P 0.001), and the interaction between human disturbance activities and water conditions was also significant(P 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil aquaculture pond sediment soil near the discharge outlet rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R~2 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands.  相似文献   

17.
Transfort of oxygen,nutrients and carbonates by the Kuroshio Current   总被引:1,自引:0,他引:1  
Measured concentrations of dissolved oxygen, phosphate, silicate, total alkalinity and calculated total CO2 in a section between 121° E and 125° E across the Kuroshio near 22° N off Taiwan and the geostrophic velocity were used to estimate the gross transport of oxygen, nutrients and carbonates. The flux of dissolved oxygen is 6.7×106 mol/s northward and 0.9×106 mol/s southward. The net flux equals 5.8×106 mol/s down-stream. The northward flux of phosphate is 22.6×103 mol/s; the southward flux is 1.4×103 mol/s. The net phosphate flux is 21.2×103 mol/s northward. The flux of silicate is 967×103 northward and 59×103 mol/s southward; the net transport is 908×103 mol/s down-stream. The flux of alkalinity is 75.5×106 mol/s northward, and 10.8×106 mol/s southward, the net flux is 64.7×106 mol/s northward. For total CO2 the transport is 73.4×106 mol/s northward and 10.8×106 mol/s southward, or a net transport of 62.6×106 mol/s horthward.  相似文献   

18.
Ji  Yan  Xie  Xiujun  Wang  Guangce 《中国海洋湖沼学报》2018,36(6):2194-2201
A bstract Cadmium(Cd) is one of the most common and widespread heavy metals in the environment. Cd has adverse effects on photosynthesis that are countered by photosystem I(PSI) and photosystem II(PSII); however, the protective responses of these photosystems to heavy metal stress remain unclear. Using the model diatom P haeodactylum tricornutum, a biological indicator that is widely used to assess the impact of environmental toxins, we simultaneously measured the effects of Cd on PSI and PSII and examined the levels of pigments in response to high light treatments before and after Cd exposure. Cd significantly reduced the quantum yield and electron transport rates of PSI and PSII. The quantum yield of non-photochemical energy dissipation in PSI due to donor side limitation increased faster than the quantum yield due to acceptor side limitation. The Cd treatment activated the P. tricornutum xanthophyll cycle under artificial light conditions, as indicated by an increased diatoxanthin content. Xanthophyll is important for photoprotection; therefore, the accumulation of diatoxanthin may down-regulate PSII activities to reduce oxidative damage. Together, our results suggest that the rapid reduction in PSII activities following Cd exposure is an adaptive response to heavy metal stress that reflects the variable exposure to external stressors in the native P. tricornutum environment.  相似文献   

19.
Chinese cabbage was cultivated in upland soil with the addition of biochar in order to investigate the potential for reduction of greenhouse gas emissions. Barley straw biochar (BSB) was introduced in a Wagner pot (1/5000a) in amounts of 0 (BSB0, control), 100 (BSB100), 300 (BSB300), and 500 (BSB500) kg 10a-1. After the addition of BSB into the upland soil, carbon dioxide (CO2) emission increased while methane (CH4) and nitrous oxide (N2O) emissions decreased. The highest CO2 flux was measured for the BSB500 sample, (84.6 g m-2) followed by BSB300, BSB100, and BSB0 in decreasing order. Relative to those of control, the total CH4 flux and N2O flux for the BSB500 treatment were lower by 31.6% and 26.1%, respectively. The global warming potential (GWP) of the treatment without biochar was 281.4 g CO2 m-2 and those for treatments with biochar were in the range from 194.1 to 224.9 g CO2 m-2. Therefore, introducing BSB into upland soil to cultivate Chinese cabbages can reduce the global warming potential.  相似文献   

20.
Partial pressure of CO2 (pCO2) was investigated in the Changjiang (Yangtze River) Estuary, Hangzhou Bay and their adjacent areas during a cruise in August 2004, China. The data show that pCO2 in surface waters of the studied area was higher than that in the atmosphere with only exception of a patch east of Zhoushan Archipelago. The pCO2 varied from 168 to 2 264 μatm, which fell in the low range compared with those of other estuaries in the world. The calculated sea-air CO2 fluxes decreased offshore and varied from -10.0 to 88.1 mmol m^-2 d^-1 in average of 24.4 ± 16.5 mmol m^-2 d^-1. Although the area studied was estimated only 2 × 10^4 km^2, it emitted (5.9 ± 4.0) × 10^3 tons of carbon to the atmosphere every day. The estuaries and their plumes must be further studied for better understanding the role of coastal seas playing in the global oceanic carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号