首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this article,we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail.Similar to radial receiver function,SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings.Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function.Moreover,the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion.The synthetic tests show that the convergence of SV-component receiver function inversion is faster than tnat of the radial receiver function inversion.As an example,we investigate the S-wave velocity structure beneath HIA sta-tion by using the SV-component receiver function inversion method.  相似文献   

2.
To determine the crustal structure in central Tibet, we used teleseismic waveform data recorded by 18 stations in the INDEPTH-Ⅲ seismic array across the central Tibet from the central Lhasa terrane to the central Qiangtang terrane. The S-wave velocity structures beneath stations are determined by inverting the stacked radial receiver function using the GA method. The first order features in the receiver function are modeled. Our results show that the Moho in Qiangtang is about 8 km shallower than that in Lhasa terrane along the INDEPTH-Ⅲ profile. It maybe suggests the northward subduction of the Lhasa mantle lid beneath the Qiangtang terrane is affected by the India-Asia collision. We conclude that there exist low velocity zone in the middle crust across the northern Lhasa and Qiangtang terrane, which can be related to the high temperature upper mantle beneath that.  相似文献   

3.
In order to give a more reliable shallow crust model for the Chinese mainland, the present study collected many short-period surface wave data which are better sensitive to shallow earth structures. Different from traditional two-step surface wave tomography, we developed a new linearized surface wave dispersion inversion method to directly get a 3D S-wave velocity model in the second step instead of inverting for 1D S-velocity profile cell by cell. We convert all the regionalized dispersions into linear constraints for a 3D S-velocity model. Checkerboard tests show that this method can give reasonable results. The distribution of the middle-and upper-crust shear-wave velocity of the Chinese mainland in our model is strongly heterogeneous and related to different geotectonic terrains. Low-velocity anomalies delineated very well most of the major sedimentary basins of China. And the variation of velocities at different depths gives an indication of basement depth of the basins. The western Tethyan tectonic domain (on the west of the 95°E longitude) is characterized by low velocity, while the eastern Tethyan domain does not show obvious low velocity. Since petroleum resources often distribute in sedimentary basins where low-velocity anomaly appears, the low velocity anomalies in the western Tethyan domain may indicate a better petroleum prospect than in its eastern counterpart. Besides, low velocity anomaly in the western Tethyan domain and around the Xing’an orogenic belt may be partly caused by high crustal temperature. The weak low-velocity belt along ~105°E longitude corresponds to the N-S strong seismic belt of central China.  相似文献   

4.
Pn arrival time data are collected from the bulletins of both national and regional seismological network in China-These data are tomographically inverted to map the lateral variation and anisotropy of Pn velocity in the northeast-ern marginal region of Qinghai-Xizang plateau.The average Pn velocity in this region is 8.09km/s,being a little higher than the average for whole China,Higher velocity is found in tectonically stable Qaidam basin,while lower velocity is seen in and around tectonically active Shanxi graben.The region where the 1920 Haiyuan great earth-quake occurred shows a slightly low Pn velocity.A noticeable result is that,differing from the tectonically com-pressive Tianshan region.where Pn velocity is low,the Qilianshan region,where the Neotectonic deformation is also primarily compressive,shows high Pn velocity,In the uppermost mantle beneath the Ordos plateau Pn veloc-ity is inhomogeneous,varying from higher velocity in southwestern part to lower one in northeastern part.This may be attributed to possible movement of the Ordos block,as there are strong earthquakes all around the block.  相似文献   

5.
A detail three-dimensional P wave velocity structure of Beijing,Tianjin and Tangshan area(BTT area)was deter-mined by inverting local earthquake data.In total 16 048 Pwave first arrival times from 16048 shallow and mid-depth crustal earthquakes,which occurred in and around the BTT area from 1992to 1999were used.The first arrival times are recorded by Northern China Unived Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network.Hypocentral parameters of 1 132 earthquakes with magnitude ML=1.7-6.2 and the three-dimensional P wave velocity structure were obtained simultaneously.The inversion result reveals the com-plicated lateral heterogeneity of P wave velocity structure around BTT area.The tomographic images obtained are also found to explain other seismological observations well.  相似文献   

6.
Research on the 3—D Seismic Structures in Qinghai—Xizang Plateau   总被引:1,自引:0,他引:1  
Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet)Platean,the three dimensiomal 3-D) seismic velocity stroctures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography.The results from these two tomography methods have similar characteristics for P-and S-wave velocity structures in crust and upper mantle.They show that there are remarkahle low velocity zones in the upper crust of L hasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau.These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.  相似文献   

7.
2-D crustal velocity structure and vp/vs are obtained by processing and interpretation of S-wave data from Maqen-Jingbian deep seismic sounding(DSS)profile.The result shows that there exist obvious differences in 2-D S-wave velocity structure and vp/vs ratio structure along the profile.The S-wave velocities are low and vp/vs ration is high for the westem section of the profile and Haiyuan region,while they are normal for the middle and eastern sections.The changes in lithologic characters of two major anomalous zones are discussed according to lateral variation of S-wave velocity structure and vp/vs ratio structure.It is concluded that the development and occurrence of the Haiyuan strong earthquake is not only related to tectonic activities,but also to lithologic characters of the region.  相似文献   

8.
Investigation has been made for the upper crust structure and seismotectionic environments in Yunnan Province using the plentiful DSS data of the four profiles.The derived velocity model has a good relationship with the ex-posed basins,uplifts and faults.The low velocity anomaly corresponding to the volcano also has been revealed.There exits a prominent lateral inhomogeneity within the upper crust of Yunnan region.The depth of crystalline basement generally ranges from 0km to 5km,and the bedrocks are exposed on the ground directly in some places,nevertheless the thickness of sedimentary cover also can reack to 8km or even 12km at some targe depressions.Although the Changning-Shuangjiang fault is a boundary between two first class tectonic units,its incision depth within the crust maybe shallow.On the other hand,known as the plates‘seam,the Honghe fault has a distinct evi-dence of extending into the mid-lower crust.The widely spread activity of the volcanoes in the geological era has a close relationship with the earthquake‘s occurrence nowadays.Despite of the ceasing of the volcanoes in some places on the ground,the material in the mid-lower crst is still active,and there still exists strong upward stress-As the ceasing of the volcanoes on the surface,most parts of the power from the lower crust and the upper mantle cannot be released;therefore it accumulates at some appropriate tectonic locations.Moreover,the saturation of the water from the basin,the action of other fluids,and the effects of the outer stress maybe another direct reason ac-count for the strong earthquakes‘occurrence in Yunnan region.  相似文献   

9.
Southwest Yunnan, located in the southern segment of the north-south seismic belt, is one of the regions with strong tectonic movement and seismic activity in China. Study on the characteristics of tectonic setting and deep geophysical field in the region is an important issue in basic science. In 2013, we conducted a 600-km-long Menghai-Gengma-Lushui profile of deep seismic wide-angle reflection/refraction and high-resolution seismic refraction in Southwest Yunnan. In this paper, we use 6 groups of clear intracrustal P-wave phases picked from the seismic record sections of 11 shots to build a velocity structure model of basement and 2D crustal P-wave of the region by using finite difference inversion and ray travel time forward fitting technology. The results show that, from south to north, the crust gradually thickens along the profile and its basement shows a significant lateral heterogeneity. In the vicinity of the Nanting River fault, the basement structure shows the character of alternate depressions and uplifts, and the shallowest basement is about 1.0 km. In the vicinity of Tengchong and Lancang, the basement is about 5.0 km deep. The velocity of the middle and lower crust in the region generally increases with the increasing of depth. At the block boundary and beneath the fault tectonic belt, the velocity contours show apparent irregularity and the P-wave velocity changes sharply. In this region, the Moho gradually deepens from south to north with relatively large lateral undulations. The shallowest point of the Moho is located near Menghai at a depth of about 32.0 km. The deepest point of the Moho is located near Tengchong at a depth of about 40.5 km. Between Gengma and Yongde, the Moho shows significantly fast uplifting and depressing with an amplitude of about 4.0 km. Beneath the Nanting River fault, Longling-Ruili fault, Dayingjiang fault and Tengchong volcano, the basement velocity structure, 2D crustal P-wave velocity structure, distribution of average profile velocity and intracrustal interface spreading also show significant changes from the basement to the top of the Moho, indicating that the crustal velocity and medium physical properties beneath the fault tectonic belt are apparently different from the crustal materials on its both sides, which suggests that these faults should be in a certain scale and may extend to the lower crust or the top of the upper mantle. The earthquakes in the region mainly occurred at a depth of 10–20 km, and the seismic activity is related to the intracrustal medium velocity difference and fault belt distribution. The results can serve as the important data of the crust-mantle structure for the analysis of the deep tectonic setting, earthquake precise positioning, seismogenic structure modeling of the seismic activities in Southwest Yunnan, as well as the important reference for the evaluation of seismic hazard and the planning of earthquake disaster mitigation of this region.  相似文献   

10.
2-D crustal structure and velocity ratio are obtained by processing S-wave data from two wide-angle reflec-tion/refraction profiles in and around Jiashi in northeastern Pamir,with the result of P-wave data taken into con-sideration.The result shows that:1)Average crustal velocity ratio is obviously higher in Tarim block than in West Kunlun Mts.and Tianshan fold zone,which reflects its crustal physical property of “hardness“and stability.The relatively low but normal velocity ratio(Poisson‘s ratio)of the lower crust indicates that the “downward thrusting“ of Tarim basin is the main feature of crustal movement in this area.2)The rock layer in the upper crust of Tian-shan fold zone is relatively“soft“,which makes it prone to rupture and stress energy release.This is the primary tectonic factor for the concentration of small earthquakes in this area.3)Jiashi is located right over the apex or the inflection point of the updoming lower crustal interface C and the crust-mantle boundary,which is the deep struc-tural background for the occurrence of strong earthquakes.The alternate variation of vp/vs near the block bounda-ries and the complicated configuration of the interfaces in the upper and middle part of the upper crust form a par-ticular structural environment for the Jiashi strong earthquake swarm.vp/vs is comparatively high and shear modulus is low at the focal region,which may be the main reason for the low stress drop of the Jiashi strong earthquake swarm.  相似文献   

11.
The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver func-tion modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s. At EDO station located 50 km north of Tianchi caldera,no obvious crustal low velocity layer is detected. In the volcanic re-gion,the thickness of crustal ...  相似文献   

12.
IntroductionTengchongvolcanicclusterisoneofthefamousvolcanicactiveareasinourcountry.LocatedatthenortheasternsideoftheimpingingmarginofIndianandEurasiaplates,TengchongvolcanicareabelongstoBurmaarc-shapeseismictectonicsystemofHimalayasstrongseismicactivezone.Thiskindofcomplextectonicenvironmentmakesitanareaoffrequentearthquake,volcanoandhotspringactivitiesforonewhole.Itisoneoftheyoungestvolcanicareasinourcountrywithmorevolcanoes,widerangeandcompleteeruptionstyles.Thevolcanoactedfrequentlyfrom…  相似文献   

13.
长白山火山区地壳S波速度结构的背景噪声成像   总被引:1,自引:0,他引:1       下载免费PDF全文
王武  陈棋福 《地球物理学报》2017,60(8):3080-3095

利用探测深俯冲的中国东北地震台阵NECsaids的60个流动台与固定地震台2010年7月至2014年12月的垂向连续波形数据,采用地震背景噪声成像方法获得了研究区6~40 s周期的瑞雷波相速度分布,并通过相速度频散反演得到了研究区下方0~50 km的三维S波速度结构.结果表明:研究区下方地壳S波速度结构存在明显的横向和纵向不均匀性,浅部速度结构与浅表地质构造单元有较好的对应,深部速度结构较好地反映了区域火山活动及深部热物质作用的结构特征;在长白山火山下方9~30 km深度范围内存在明显低速区并有向下延伸的趋势,推测可能为长白山火山地壳岩浆囊;在龙岗火山下方12~30 km深度范围内发现较弱的低速区,可能代表火山喷发后的残留物,而在镜泊湖火山下方没有明显的低速异常,说明镜泊湖火山地壳内可能不存在部分熔融的岩浆物质.

  相似文献   

14.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   

15.
In this study, three receiver function stacking methods are used to study the detailed crust and upper mantle structure beneath south-central Alaska. We used teleseismic waveform data recorded by 36 stations in the Broadband Experiment Across the Alaska Range (BEAAR) and 4 permanent stations in Alaska. H − κ stacking method using P-to-S converted wave and its multiply reflected waves between the Earth's surface and the Moho discontinuity is adopted to estimate the crustal thickness (H) and average crustal VP/VS ratio (κ) in this region. The receiver function results for 24 stations show that the crustal thickness under Alaska ranges from 26.0 to 42.6 km with an average value of 33.8 km, and the VP/VS ratio varies from 1.66 to 1.94 with an average value of 1.81 which corresponds to an average Poisson's ratio of 0.277 with a range from 0.216 to 0.320. High Poisson's ratios under some stations are possibly caused by partial melting in the crust and the uppermost mantle. Common converted point (CCP) stacking results of receiver functions along three lines show clear Moho and slab images under this subduction zone. The depths of the slab from our CCP stacking images are consistent with those estimated from the Wadati–Benioff Zone (WBZ). In the area between two stations DH2 (147.8°W, 63.3°N) and DH3 (147.1°W, 63.0°N), a Moho depth offset of about 10 km is found by both the H − κ and CCP stacking techniques. Common depth point (CDP) stacking of receiver functions shows not only the 410-, 520- and 660-km discontinuities, but also significant variations (−30 to 15 km) in the transition zone thickness under the southwest and southeast parts of the study region. The transition zone becomes thinner by 20–30 km, indicating that the temperature there is 150–200 K higher than that of the normal mantle.  相似文献   

16.
利用2002~2003年中国地震局地质研究所台阵实验室以唐山大震区为中心布设的40个流动宽频带地震台站和首都圈数字台网的33个宽频带台站的远震数据,采用接收函数非线性反演方法得到其中72个宽频带台站下方60 km深度范围内的S波速度结构.根据得到的各台站下方地壳上地幔的S波速度结构,并综合刘启元等(1997)用接收函数非线性反演方法得到的延怀盆地15个宽频带流动台站下方的地壳上地幔S波速度结构模型,给出了39°N~41°N,114°E~119.5°E区域内沿不同走向、不同深度S波速度分布.由于综合了利用首都圈数字地震台网的宽频带台站以及流动地震台阵的观测数据,本文给出了较前人同类研究空间分辨率更好的结果.结果表明: (1)研究区的速度结构,特别是怀来以东的速度结构十分复杂.在10~20 km深度范围内,研究区地壳具有高速和低速异常块体的交错结构.研究区中上地壳速度结构主要被与张渤地震带大体重合的NW向高速条带和穿越唐山大震区的NE向高速条带所控制,而其中下地壳的速度结构主要为延怀—三河—唐山地区上地幔隆起所控制.(2)研究区内存在若干壳内S波低速体,它们主要分布在唐山,三河及延怀盆地等地区.在这些地区,壳内低速体伴随着壳幔界面的隆起和上地幔顶部速度结构的横向变化.(3)地表断层分布与地壳速度结构分区有较好的相关性,表明断层对不同块体有明显的控制作用.其中,宝坻断裂,香河断裂和唐山断裂均为超壳断裂.(4)首都圈内大地震的分布与壳内低速体及上地幔顶部的速度结构有密切关系.对于唐山大地震的成因,仅考虑板块作用引起的水平应力场是不够的,有必要充分重视由于上地幔变形引起的地壳垂直变形和上地幔物质侵入造成的热效应.  相似文献   

17.
We analyzed teleseismic waveforms recorded by 36 stations near Bohai Sea region and obtained 2 248 high quality receiver functions.The crustal thickness (H) and average crustal vP/vS ratio (κ) as well as the Poisson's ratios beneath 34 stations were estimated using the H-κ stacking method.The results indicate that crustal thicknesses near the Liaoning province range from 30.0 to 35.5 km,and the corresponding vP/vS ratios vary from 1.72 to 1.89 which corresponds to Poisson's ratio with a range from 0.243 to ...  相似文献   

18.
五大连池火山是全新世以来曾经喷发的近代火山群,该火山区小震活动频繁,被认为是活动的休眠火山.本文对该火山区的深部结构进行了接收函数反演和研究.研究结果表明:该火山区存在广泛分布的S波低速结构,个别低速结构赋存部位较浅,低速结构与地震活动性具有对应关系,火山区下部的莫霍界面不十分明显,存在岩浆上涌的条件.因此,我们认为该火山具有活动火山的深部结构特征,存在再次活动的基本条件.  相似文献   

19.
长白山天池火山区介质速度非均匀性谱结构   总被引:1,自引:0,他引:1       下载免费PDF全文
观测和研究表明,非均匀介质RMS (Root Mean Square)速度微扰动ε, 特征尺度相关距离a以及幂指数κ的空间分布特征可描述介质非均匀性特征.本文选用长白山天池火山区的小震记录,运用S波包络展宽法对长白山天池火山区地壳浅部介质速度非均匀性谱结构进行了研究.结果发现长白山天池火山区地壳浅部介质呈现强烈的介质非均匀性,且其具有明显的频率特性.在2~4 Hz及4~8 Hz频带范围内,小尺度弱非均匀性介质基本上分布在天池火山口的东南角和西北角,大尺度强非均匀性介质基本上分布在天池火山口的西南角和东北角,这一特征在0~2 km和2~5 km深度范围内均体现;在8~16 Hz频带内,0~2 km深度范围内弱非均匀性介质分布在火山口西部,而2~5 km深度范围内弱非均匀性介质基本上分布在火山口周围区域;在16~30 Hz频带内,0~2 km深度范围小尺度弱非均匀性介质分布在火山口的东北角及西南角,而2~5 km深度范围内小尺度弱非均匀性介质集中分布在火山口的东南角,西北角有少量分布.  相似文献   

20.
The crust and upper mantle structure beneath southeastern China   总被引:1,自引:0,他引:1  
We analyzed teleseismic waveforms recorded by 44 stations in the Fujian and Taiwan provinces of China and obtained 5344 high quality receiver functions. The crustal thickness (H) and average crustal VP/VS ratio (k) beneath every station were estimated using the Hk stacking method. Crustal thicknesses near the Fujian Province range from 28.3 to 32.8 km with an average of 31.1 km, and the corresponding VP/VS ratios vary from 1.70 to 1.84 with a mean of 1.76. From inland to offshore of the Fujian Province, the crustal thicknesses decrease and Poisson's ratios increase. These may indicate decreasing SiO2 and increasing calc-alkaline contents in the crust. The discontinuity structures such as the Moho, subducting slab, the 410- and 660-km discontinuities (hereafter we call them the 410 and the 660) are also studied using common converted point (CCP) stacking of receiver functions. Along two NW–SE lines of central and northern Taiwan, the CCP stacking results show a western dipping structure at depths above 50 km, suggesting that the Philippine Sea plate is probably subducting beneath the Eurasian continent plate near the central and northern Taiwan. The CCP stacking results show sharp and flat 410- and 660-km discontinuities, and the transition zone thickness (TZT) is the same as that of ambient mantle beneath Fujian and Taiwan Strait, but thickens in the east of Taiwan. These results suggest that (1) the subducting Eurasian continent plate is confined to the depths above 410 km beneath Fujian and Taiwan Strait; and (2) the South China Sea slab may reach the transition zone beneath the east of Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号