首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed deep imaging of a diverse sample of 26 low surface brightness galaxies (LSBGs) in the optical and the near-infrared. Using stellar population synthesis models, we find that it is possible to place constraints on the ratio of young to old stars (which we parametrize in terms of the average age of the galaxy), as well as the metallicity of the galaxy, using optical and near-infrared colours. LSBGs have a wide range of morphologies and stellar populations, ranging from older, high-metallicity earlier types to much younger and lower-metallicity late-type galaxies. Despite this wide range of star formation histories, we find that colour gradients are common in LSBGs. These are most naturally interpreted as gradients in mean stellar age, with the outer regions of LSBGs having lower ages than their inner regions. In an attempt to understand what drives the differences in LSBG stellar populations, we compare LSBG average ages and metallicities with their physical parameters. Strong correlations are seen between an LSBG's star formation history and its K -band surface brightness, K -band absolute magnitude and gas fraction. These correlations are consistent with a scenario in which the star formation history of an LSBG primarily correlates with its surface density and its metallicity correlates with both its mass and its surface density.  相似文献   

2.
It is shown that the giant low surface brightness galaxies (GLSBs), characterized by a large but diffuse disc component, can result from ordinary spiral galaxies through dynamical evolution. Numerical simulations indicate that the formation of a bar in a gravitationally unstable disc with high surface density induces non-circular motions and radial mixing of disc matter, leading to the flattening of the disc density profile. The resulting decrease in the disc central surface brightness is ∼1.5 magnitude, while the disc scalelength is nearly doubled, transforming a typical high surface brightness galaxy to a GSLB. This scenario seems promising especially for the GSLBs possessing a significant bulge, which are difficult to incorporate into the traditional Hubble sequence. Namely, because this disc transmutation can operate even if a moderate bulge component exists, the GSLBs with a bulge are argued to have resulted from the high surface brightness galaxies which had already possessed a bulge. The current picture naturally explains other observed characteristics of the GSLBs as well, including the propensity for having grand-design spiral arms and a bar, a high incidence of active nuclei, and galaxy environments.  相似文献   

3.
We present evidence for cosmological gas accretion on to spiral galaxies in the local universe. The accretion is seen through its effects on the dynamics of the extraplanar neutral gas. The accretion rates that we estimate for two nearby spiral galaxies are of the order of their star formation rates. Our model shows that most of the extraplanar gas is produced by supernova feedback (galactic fountain) and only 10–20 per cent comes from accretion. The accreting material must have low specific angular momentum about the disc's spin axis, although the magnitude of the specific angular momentum vector can be higher. We also explore the effects of a hot corona on the dynamics of the extraplanar gas and find that it is unlikely to be responsible for the observed kinematical pattern and the source of accreted gas. However, the interaction with the fountain flow should profoundly affect the hydrodynamics of the corona.  相似文献   

4.
We investigate the relationship between the star formation rate per unit area and the surface density of the interstellar medium (ISM; the local Kennicutt–Schmitt law) using a simplified model of the ISM and a simple estimate of the star formation rate based on the mass of gas in bound clumps, the local dynamical time-scales of the clumps and an efficiency parameter of around  ε≈ 5  per cent. Despite the simplicity of the approach, we are able to reproduce the observed linear relation between star formation rate and surface density of dense (molecular) gas. We use a simple model for the dependence of H2 fraction on total surface density to argue why neither total surface density nor the H  i surface density is a good local indicator of star formation rate. We also investigate the dependence of the star formation rate on the depth of the spiral potential. Our model indicates that the mean star formation rate does not depend significantly on the strength of the spiral potential, but that a stronger spiral potential, for a given mean surface density, does result in more of the star formation occurring close to the spiral arms. This agrees with the observation that grand design galaxies do not appear to show a larger degree of star formation compared to their flocculent counterparts.  相似文献   

5.
6.
7.
8.
9.
10.
We present radio observations and optical spectroscopy of the giant low surface brightness (LSB) galaxy PGC 045080 (or 1300+0144). PGC 045080 is a moderately distant galaxy having a highly inclined optical disc and massive H  i gas content. Radio continuum observations of the galaxy were carried out at 320, 610 MHz and 1.4 GHz. Continuum emission was detected and mapped in the galaxy. The emission appears extended over the inner disc at all three frequencies. At 1.4 GHz and 610 MHz it appears to have two distinct lobes. We also did optical spectroscopy of the galaxy nucleus; the spectrum did not show any strong emission lines associated with active galactic nucleus (AGN) activity but the presence of a weak AGN cannot be ruled out. Furthermore, comparison of the Hα flux and radio continuum at 1.4 GHz suggests that a significant fraction of the emission is non-thermal in nature. Hence we conclude that a weak or hidden AGN may be present in PGC 045080. The extended radio emission represents lobes/jets from the AGN. These observations show that although LSB galaxies are metal poor and have very little star formation, their centres can host significant AGN activity. We also mapped the H  i gas disc and velocity field in PGC 045080. The H  i disc extends well beyond the optical disc and appears warped. In the H  i intensity maps, the disc appears distinctly lopsided. The velocity field is disturbed on the lopsided side of the disc but is fairly uniform in the other half. We derived the H  i rotation curve for the galaxy from the velocity field. The rotation curve has a flat rotation speed of ∼190 km s−1.  相似文献   

11.
12.
13.
14.
We use K '-band (2.1-μm) imaging to investigate the angular size and morphology of 10 6C radio galaxies, at redshifts 1≤ z ≤1.4. Two radio galaxies appear to be undergoing mergers, another contains, within a single envelope, two intensity peaks aligned with the radio jets, while the other seven appear consistent with being normal ellipticals in the K band.
Intrinsic half-light radii are estimated from the areas of each radio galaxy image above a series of thresholds. The 6C galaxy radii are found to be significantly smaller than those of the more radio-luminous 3CR galaxies at similar redshifts. This would indicate that the higher mean K -band luminosity of the 3CR galaxies reflects a difference in the size of the host galaxies, and not solely a difference in the power of the active nuclei.
The size–luminosity relation of the z ∼1.1 6C galaxies indicates a 1.0–1.6 mag enhancement of their rest frame R -band surface brightness relative to either local ellipticals of the same size or FRII radio galaxies at z <0.2. The 3CR galaxies at z ∼1.1 show a comparable enhancement in surface brightness. The mean radius of the 6C galaxies suggests that they evolve into ellipticals of L ∼ L * luminosity, and is consistent with their low-redshift counterparts being relatively small FRII galaxies ∼25 times lower in radio luminosity, or small FRI galaxies ∼1000 times lower in radio luminosity. Hence the 6C radio galaxies appear to undergo as much optical and radio evolution as the 3CR galaxies.  相似文献   

15.
We have carried out the harmonic analysis of the atomic hydrogen (H  i ) surface density maps and the velocity fields for 11 galaxies belonging to the Ursa Major group, over a radial range of 4–6 disc scalelengths in each galaxy. This analysis gives the radial variation of spatial lopsidedness, quantified by the Fourier amplitude A 1 of the   m = 1  component normalized to the average value. The kinematical analysis gives a value for the elongation of the potential to be ∼10 per cent. The mean amplitude of spatial lopsidedness is found to be ∼0.14 in the inner disc, similar to the field galaxies, and is smaller by a factor of ∼2 compared to the Eridanus group galaxies. It is also shown that the average value of A 1 does not increase with the Hubble type, contrary to what is seen in field galaxies. We argue that the physical origin of lopsidedness in the Ursa Major group of galaxies is tidal interactions, albeit weaker and less frequent than in Eridanus. Thus systematic studies of lopsidedness in groups of galaxies can provide dynamical clues regarding the interactions and evolution of galaxies in a group environment.  相似文献   

16.
We study the dynamics of a model for the late-type barred-spiral galaxy NGC 3359 by using both observational and numerical techniques. The results of our modelling are compared with photometric and kinematical data. The potential used is estimated directly from observations of the galaxy. It describes with a single potential function, a barred-spiral system with an extended spiral structure. Thus, the study of the dynamics in this potential has an interest by itself. We apply orbital theory and response models for the study of the stellar component, and smoothed particle hydrodynamics for modelling the gas. In particular, we examine the pattern speed of the system and the orbital character (chaotic or ordered) of the spiral arms. We conclude that the spiral pattern rotates slowly, in the sense that its corotation is close to or even beyond the end of the arms. Although a single, slow pattern speed could, under certain assumptions, characterize the whole disc, the comparison with the observational data indicates that probably the bar and the spirals have different angular velocities. In our two pattern speeds model, the best fit is obtained with a bar ending close to its 4:1 resonance and a more slowly rotating spiral. Assuming an 11 Mpc distance to the galaxy, a match of our models with the observed data indicates a pattern speed of about  39 km s−1 kpc−1  for the bar and about  15 km s−1 kpc−1  for the spiral. We do not find any indication for a chaotic character of the arms in this barred-spiral system. The flow in the region of the spirals can best be described as a regular 'precessing-ellipses flow'.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号