首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence of a young progenitor population for many Type Ia supernovae (SNe Ia) raises the possibility that evolved intermediate-mass progenitor stars may be detected in pre-explosion images. NGC 1316, a radio galaxy in the Fornax cluster, is a prolific producer of SNe Ia, with four detected since 1980. We analyse Hubble Space Telescope ( HST ) pre-explosion images of the sites of two of the SNe Ia that exploded in this galaxy, SN2006dd (a normal Type Ia) and SN2006mr (likely a subluminous, 1991bg-like, SN Ia). Astrometric positions are obtained from optical and near-infrared ground-based images of the events. We find no candidate point sources at either location, and set upper limits on the flux in B, V and I from any such progenitors. We also estimate the amount of extinction that could be present, based on analysis of the surface-brightness inhomogeneities in the HST images themselves. At the distance of NGC 1316, the limits correspond to absolute magnitudes of  ∼−5.5, −5.4  and −6.0 mag in   M B , M V   and   M I   , respectively. Comparison to stellar evolution models argues against the presence at the supernova sites, 3 yr prior to the explosion, of normal stars with initial masses  ≳6 M  at the tip of their asymptotic-giant branch (AGB) evolution, young post-AGB stars that had initial masses  ≳4 M  and post-red giant stars of initial masses  ≳9 M  .  相似文献   

2.
3.
By assuming an aspherical stellar wind with an equatorial disc from a red giant, we investigate the production of Type Ia supernovae (SNe Ia) via a symbiotic channel. We estimate that the Galactic birthrate of SNe Ia via the symbiotic channel is between  1.03 × 10−3  and  2.27 × 10−5 yr−1  , while the delay time of SNe Ia has a wide range from ∼0.07 to 5 Gyr. The results are greatly affected by the outflow velocity and mass-loss rate of the equatorial disc. Using our model, we discuss the progenitors of SN 2002ic and SN 2006X.  相似文献   

4.
5.
The properties of underluminous Type Ia supernovae (SNe Ia) of the 91bg subclass have yet to be theoretically understood. Here, we take a closer look at the structure of the dim SN Ia 2005bl. We infer the abundance and density profiles needed to reproduce the observed spectral evolution between −6 d and  +12.9 d  with respect to B maximum. Initially, we assume the density structure of the standard explosion model W7; then we test whether better fits to the observed spectra can be obtained using modified density profiles with different total masses and kinetic energies. Compared to normal SNe Ia, we find a lack of burning products especially in the rapidly expanding outer layers  ( v ≳ 15 000 km s−1)  . The zone between ∼8500 and 15 000 km s−1 is dominated by oxygen and includes some amount of intermediate-mass elements. At lower velocities, intermediate-mass elements dominate. This holds down to the lowest zones investigated in this work. This fact, together with negligible-to-moderate abundances of Fe-group elements, indicates large-scale incomplete Si burning or explosive O burning, possibly in a detonation at low densities. Consistently with the reduced nucleosynthesis, we find hints of a kinetic energy lower than that of a canonical SN Ia: the spectra strongly favour reduced densities at  ≳13 000 km s−1  compared to W7, and are very well fitted using a rescaled W7 model with original mass  (1.38 M)  , but a kinetic energy reduced by ∼30 per cent (i.e. from  1.33 × 1051  to  0.93 × 1051 erg  ).  相似文献   

6.
We have determined the absolute magnitude at maximum light of SN 1992A by using the turnover magnitude of the globular cluster luminosity function of its parent galaxy, NGC 1380. A recalibration of the peak of the turnover magnitude of the Milky Way clusters using the latest Hipparcos results has been made with an assessment of the complete random and systematic error budget. The following results emerge: a distance to NGC 1380 of 18.6 ± 1.4 Mpc, corresponding to ( m  −  M )  31.35 ± 0.16, and an absolute magnitude of SN 1992A at maximum of M B (max)  −18.79 ± 0.16. Taken at face value, SN 1992A seems to be more than half a magnitude fainter than the other SNe Ia for which accurate distances exist. We discuss the implications of this result and present possible explanations. We also discuss the Phillips relationship between rate of decline and the absolute magnitude at maximum, on the basis of nine SNe Ia, the individual distances of which have been obtained with Cepheids and the globular cluster luminosity function. The new calibration of this relationship, applied to the most distant SNe of the Calan–Tololo survey, yields H 0 = 62 ± 6 km s−1 Mpc−1.  相似文献   

7.
Deep inside the core of Abell 1795: the Chandra view   总被引:1,自引:0,他引:1  
We present X-ray spatial and spectral analysis of the Chandra data from the central     of the cluster of galaxies Abell 1795. The plasma temperature rises outwards by a factor of 3, whereas the iron abundance decreases by a factor of 4. The spatial distribution of oxygen, neon, sulphur, silicon and iron shows that supernovae Type Ia dominate the metal enrichment process of the cluster plasma within the inner 150 kpc. Resolving both the gas density and temperature in nine radial bins, we recover the gravitational mass density profile and show that it flattens within 100 kpc as   ρ DM∝ r -0.6  with a power-law index flatter than −1 at >3 σ level. The observed motion of the central galaxy and the presence of excesses and deficits along the north–south direction in the brightness distribution indicate that the central cluster region is not relaxed. In the absence of any non-gravitational heating source, the data from the inner ∼200 kpc indicate the presence of a cooling flow with an integrated mass deposition rate of about 100 M yr−1. Over the same cluster region, the observed rate of 74 M yr−1 is consistent with the recent XMM-Newton Reflection Grating Spectrometer limit of 150 M yr−1.  相似文献   

8.
The spectrum of the normal Type Ia SN 1990N observed very early on (14 days before B maximum) was analysed by Fisher et al., who showed that the large width and the unusual profile of the strong line near 6000 Å can be reproduced if the line is assumed to be due to C  ii 6578, 6583 Å and if carbon is located in a high-velocity shell. This line is one of the characterizing features of SNe Ia, and is usually thought to be due to Si  ii . A Monte Carlo spectrum synthesis code is used to investigate this suggestion further. The result is that if a standard explosion model is used, the mass enclosed in the shell at the required high velocity (25 000–35 000 km s−1) is too small to give rise to a strong C  ii line. At the same time, removing silicon has a negative effect on the synthetic spectrum at other wavelengths, and removing carbon from the lower velocity regions near the photosphere makes it difficult to reproduce two weak lines which are naturally explained as C  ii , one of them being the line which Fisher et al. suggested is responsible for the strong 6000-Å feature. However, synthetic spectra confirm that although Si  ii can reproduce most of the observed 6000-Å line, the red wing of the line extends too far to be compatible with a Si  ii origin, and that the flat bottom of the line is also not easy to reproduce. The best fit is obtained for a normal SN Ia abundance mix at velocities near the photosphere (15 500–19 000 km s−1) and an outer carbon–silicon shell beyond 20 000 km s−1. This suggests that mixing is not complete in the outer ejecta of an SN Ia. Observations at even earlier epochs might reveal to what extent a carbon shell is unmixed.  相似文献   

9.
We report the discovery of the nearby  ( d = 24 pc)  HD 75767 as an eight billion year old quadruple system consisting of a distant M dwarf pair, HD 75767 C–D, in orbit around the known short-period   P = 10.25 d  single-lined binary HD 75767 A–B, the primary of which is a solar-like G star. On the reasonable assumption of synchronous orbital rotation as well as rotational and orbital coplanarity for the inner pair, we get   M B= 0.96 M  for the unseen HD 75767 B, that is, the case of a massive white dwarf. Upon future evolution, mass transfer towards HD 75767 B will render the   M A= 0.96 M  G-type primary, now a turnoff star, to become a helium white dwarf of   M A∼ 0.33 M  . Depending on the mass accretion rate, accretion efficiency and composition of the massive white dwarf, this in turn may result in a collapse of HD 75767 B with the formation of a millisecond pulsar, i.e. the creation of a low-mass binary pulsar (LMBP), or, instead, a Type Ia supernova explosion and the complete disruption of HD 75767 B. Irrespective of which scenario applies, we point to the importance of the distant M dwarfs as the likely agents for the formation of the inner, short-period HD 75767 A–B pair, and hence a path that particularly avoids preceding phases of common envelope evolution.  相似文献   

10.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

11.
We have analysed the kinematical parameters of Cir X-1 to constrain the nature of its companion star, the eccentricity of the binary and the pre-supernova parameter space. We argue that the companion is most likely to be a low-mass (≲2.0 M) unevolved star and that the eccentricity of the orbit is 0.94±0.04. We have evaluated the dynamical effects of the supernova explosion and we find it must have been asymmetric. On average , we find that a kick of ∼740 km s−1 is needed to account for the recently measured radial velocity of +430 km s−1 (Johnston, Fender & Wu) for this extreme system. The corresponding minimum kick velocity is ∼500 km s−1. This is the largest kick needed to explain the motion of any observed binary system. If Cir X-1 is associated with the supernova remnant G321.9-0.3 then we find a limiting minimum age of this remnant of ∼60 000 yr. Furthermore, we predict that the companion star has lost ∼10 per cent of its mass as a result of stripping and ablation from the impact of the supernova shell shortly after the explosion.  相似文献   

12.
Cygnus X-2 appears to be the descendant of an intermediate-mass X-ray binary (IMXB). Using Mazzitelli's stellar code we compute detailed evolutionary sequences for the system and find that its prehistory is sensitive to stellar input parameters, in particular the amount of core overshooting during the main-sequence phase. With standard assumptions for convective overshooting a case B mass transfer starting with a 3.5-M donor star is the most likely evolutionary solution for Cygnus X-2. This makes the currently observed state rather short-lived, of order 3 Myr, and requires a formation rate > 10−7–10−6 yr−1 of such systems in the Galaxy. Our calculations show that neutron star IMXBs with initially more massive donors (≳4 M) encounter a delayed dynamical instability; they are unlikely to survive this rapid mass transfer phase. We determine limits for the age and initial parameters of Cygnus X-2 and calculate possible dynamical orbits of the system in a realistic Galactic potential, given its observed radial velocity. We find trajectories which are consistent with a progenitor binary on a circular orbit in the Galactic plane inside the solar circle that received a kick velocity ≤200 km s−1 at the birth of the neutron star. The simulations suggest that about 7 per cent of IMXBs receiving an arbitrary kick velocity from a standard kick velocity spectrum would end up in an orbit similar to Cygnus X-2, while about 10 per cent of them reach yet larger Galactocentric distances.  相似文献   

13.
We apply the stochastic model of iron transport developed by Rebusco et al. to the Centaurus cluster. Using this model, we find that an effective diffusion coefficient D in the range  2 × 1028–4 × 1028 cm2 s−1  can approximately reproduce the observed abundance distribution. Reproducing the flat central profile and sharp drop around  30–70 kpc  , however, requires a diffusion coefficient that drops rapidly with radius so that   D > 4 × 1028 cm2 s−1  only inside about  25 kpc  . Assuming that all transport is due to fully developed turbulence, which is also responsible for offsetting cooling in the cluster core, we calculate the length- and velocity-scales of energy injection. These length-scales are found to be up to a factor of ∼10 larger than expected if the turbulence is due to the inflation and rising of a bubble. We also calculate the turbulent thermal conductivity and find it is unlikely to be significant in preventing cooling.  相似文献   

14.
Two nights of phase-resolved medium-resolution Very Large Telescope spectroscopy of the extra-galactic low-mass X-ray binary LMC X−2 have revealed a 0.32 ± 0.02 d spectroscopic period in the radial velocity curve of the He  ii λ4686 emission line that we interpret as the orbital period. However, similar to previous findings, this radial velocity curve shows a longer term variation that is most likely due to the presence of a precessing accretion disc in LMC X−2. This is strengthened by He  ii λ4686 Doppler maps that show a bright spot that is moving from night to night. Furthermore, we detect narrow emission lines in the Bowen region of LMC X−2, with a velocity of   K em= 351 ± 28 km s−1  , that we tentatively interpret as coming from the irradiated side of the donor star. Since K em must be smaller than K 2, this leads to the first upper limit on the mass function of LMC X−2 of   f ( M 1) ≥ 0.86  M  (95 per cent confidence), and the first constraints on its system parameters.  相似文献   

15.
A Chandra X-ray observation of the globular cluster Terzan 1   总被引:1,自引:0,他引:1  
We present a ∼19-ks Chandra Advanced CCD Imaging Spectrometer (ACIS)-S observation of the globular cluster Terzan 1. 14 sources are detected within 1.4 arcmin of the cluster centre with two of these sources predicted to be not associated with the cluster (background active galactic nuclei or foreground objects). The neutron star X-ray transient, X1732−304, has previously been observed in outburst within this globular cluster with the outburst seen to last for at least 12 yr. Here, we find four sources that are consistent with the ROSAT position for this transient, but none of the sources are fully consistent with the position of a radio source detected with the Very Large Array that is likely associated with the transient. The most likely candidate for the quiescent counterpart of the transient has a relatively soft spectrum and an unabsorbed 0.5–10 keV luminosity of  2.6 × 1032 erg s−1  , quite typical of other quiescent neutron stars. Assuming standard core cooling, from the quiescent flux of this source we predict long (>400 yr) quiescent episodes to allow the neutron star to cool. Alternatively, enhanced core cooling processes are needed to cool down the core. However, if we do not detect the quiescent counterpart of the transient this gives an unabsorbed 0.5–10 keV luminosity upper limit of  8 × 1031 erg s−1  . We also discuss other X-ray sources within the globular cluster. From the estimated stellar encounter rate of this cluster we find that the number of sources we detect is significantly higher than expected by the relationship of Pooley et al.  相似文献   

16.
We present optical and near-infrared photometry and spectroscopy of the Type Ia SN 2003cg, which exploded in the nearby galaxy NGC 3169. The observations cover a period between −8.5 and +414 d post-maximum. SN 2003cg is a normal but highly reddened Type Ia event. Its B magnitude at maximum   B max= 15.94 ± 0.04  and  Δ m 15( B )obs= 1.12 ± 0.04 [Δ m 15( B )intrinsic= 1.25 ± 0.05]  . Allowing   RV   to become a free parameter within the Cardelli et al. extinction law, simultaneous matches to a range of colour curves of normal SNe Ia yielded   E ( B − V ) = 1.33 ± 0.11  , and   RV = 1.80 ± 0.19  . While the value obtained for   RV   is small, such values have been invoked in the past, and may imply a grain size which is small compared with the average value for the local interstellar medium.  相似文献   

17.
HST WFPC2 observations of Cepheids in M96 (NGC 3368) are used to find a distance to that galaxy of 11.2±1.0  Mpc. This estimate is based on a calibration of the Cepheid period–luminosity relation in the Large Magellanic Cloud, and includes a correction for the difference in metallicity between the two systems. There are good reasons for believing M96 is at the same distance as four E/S0 galaxies in the Leo-I group, and hence we calibrate secondary distance indicators based on the early-type galaxies, namely the fundamental plane and surface-brightness-fluctuation method. Also the Type Ia supernova 1998bu occurred in M96 itself and is used to calibrate the SN Ia distance scale. These methods reach to recession velocities of greater than 5000 km s−1 and can therefore allow us to evaluate the Hubble constant without reference to the peculiar velocity of M96 itself. In fact, these indicators agree well between themselves and hence we find H 0=67±7 km s−1 Mpc−1 where the quoted error includes estimates of potential systematic effects.  相似文献   

18.
We present high- and medium-resolution spectroscopic observations of the cataclysmic variable BF Eridani (BF Eri) during its low and bright states. The orbital period of this system was found to be 0.270881(3) d. The secondary star is clearly visible in the spectra through the absorption lines of the neutral metals Mg  i , Fe  i and Ca  i . Its spectral type was found to be K3±0.5. A radial velocity study of the secondary yielded a semi-amplitude of   K 2= 182.5 ± 0.9 km s−1  . The radial velocity semi-amplitude of the white dwarf was found to be   K 1= 74 ± 3 km s−1  from the motion of the wings of the Hα and Hβ emission lines. From these parameters, we have obtained that the secondary in BF Eri is an evolved star with a mass of  0.50–0.59 M  , whose size is about 30 per cent larger than a zero-age main-sequence single star of the same mass. We also show that BF Eri contains a massive white dwarf  ( M 1≥ 1.2 M)  , which allows us to consider the system as a Type Ia supernova progenitor. BF Eri also shows a high γ-velocity  (γ=−94 km s−1)  and substantial proper motion. With our estimation of the distance to the system  ( d ≈ 700 ± 200 pc)  , this corresponds to a space velocity of ∼350 km s−1 with respect to the dynamical local standard of rest. The cumulative effect of repeated nova eruptions with asymmetric envelope ejection might explain the high space velocity of the system. We analyse the outburst behaviour of BF Eri and question the current classification of the system as a dwarf nova. We propose that BF Eri might be an old nova exhibiting 'stunted' outbursts.  相似文献   

19.
The universal baryonic mass fraction  (Ωbm)  can be sensitively constrained using X-ray observations of galaxy clusters. In this paper, we compare the baryonic mass fraction inferred from measurements of the cosmic microwave background with the gas mass fractions ( f gas) of a large sample of clusters taken from the recent literature. In systems cooler than 4 keV, f gas declines as the system temperature decreases. However, in higher temperature systems, f gas( r 500) converges to  ≈(0.12 ± 0.02)( h /0.72)−1.5  , where the uncertainty reflects the systematic variations between clusters at r 500. This is significantly lower than the maximum-likelihood value of the baryon fraction from the recently released Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr results. We investigate possible reasons for this discrepancy, including the effects of radiative cooling and non-gravitational heating, and conclude that the most likely solution is that Ωm is higher than the best-fitting WMAP value (we find  Ωm= 0.36+0.11−0.08  ), but consistent at the 2σ level. Degeneracies within the WMAP data require that σ8 must also be greater than the maximum likelihood value for consistency between the data sets.  相似文献   

20.
We combine Lyman-break colour selection with ultradeep (≳200 ks) Chandra X-ray imaging over a survey area of ∼0.35 deg2 to select high-redshift active galactic nuclei (AGN). Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at   z ∼ 3  . Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at   z = 1  , we find no evidence that the faint slope of the XLF flattens at high z , but we do find significant (factor ∼3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity   L *  . Our data therefore support models of luminosity-dependent density evolution between   z = 1  and   z = 3  . A sharp upturn in the the XLF is seen at the very lowest luminosities  ( L X≲ 1042.5 erg s−1)  , most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号