首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recognizing that waves play an important role in energy-exchange processes between layers of the solar atmosphere, and that the characteristics of propagating waves are determined by the physical conditions of the medium, and, most importantly, the magnetic-field configuration, we have carried out a comparative analysis of the properties of oscillations in solar structures with various magnetic-field topologies: sunspots, faculae, and coronal holes. Simultaneous measurements of the Doppler velocities and intensities at the photospheric and chromospheric levels were accompanied by episodic measurements of the longitudinal magnetic field. In the chromosphere, spot umbrae dominate the three-minute oscillations, while lower-frequency modes are also observed in the penumbrae and at the outer parts of spots. Clear signs of propagating waves have been observed at the bases of coronal holes and in faculae only at frequencies close to 3 mHz.  相似文献   

2.
The power spectra of radial-velocity and intensity oscillations are analyzed using ground-based (the Si I 10 827 Å and He I 10 830 Å lines) and Solar Dynamics Observatory (the Fe I 6173, 1700 Å, He II 304 Å, and Fe IX 171 Å lines) data, with the aim of searching for frequency modes that most efficiently penetrate into the solar corona from the lower layers of solar faculae. Analysis of the spatial distribution of the oscillation power at various heights indicates that fan structures in the corona (at the height of the 171 Å emission) are better reproduced at frequencies of 1–1.5 mHz. This means that oscillations with periods of 10–15 min dominate in coronal loops above faculae regions. The five-minute oscillations that universally dominate in radial-velocity measurements in low layers of faculae are appreciable in coronal loops only in individual compact fragments.  相似文献   

3.
Spatial and temporal variations in the line-of-sight velocities and brightnesses measured in the Hα and FeI 6564 Å Hβ and FeI 4864 Å NiI 4857 Å lines at the bases of polar coronal holes are analyzed. Time series with durations of 43–120 min were recorded using a CCD strip (3700 pixels 200×7 µm in size) and a CCD array (256×1024 pixels 24 µm in size). Quasi-stationary upward flows (with radial velocities reaching 3 km/s in the photosphere and 12–15 km/s in the chromosphere) were observed near dark points at the boundaries of the chromospheric network. The acoustic 3-min and 5-min oscillations are amplified in the coronal hole, and reach 1 km/s in the photosphere and 3–4 km/s in the chromosphere. The spectra of fluctuations of the line-of-sight velocity exhibit significant maxima at low frequencies, clustering near 0.4, 0.75, and 1 mHz.  相似文献   

4.
We examine plasma heating due to the dissipation of acoustic waves excited in coronal magnetic loops by parametric resonance with the five-minute oscillations in the velocity of the photospheric convection. The energy of acoustic waves excited in the coronal magnetic loop, rate of dissipation of acoustic waves, and rate of heating of the coronal plasma are determined. The maximum temperature predicted for the apex of the loop is calculated as a function of the velocity of photospheric oscillations, length of the loop, and electric current in the loop. It is shown that the mechanism proposed can explain the origin of quasi-stationary X-ray loops with temperatures of 3–6 MK. The lengths of these loops are resonant for acoustic waves excited by the five-minute photospheric oscillations. The use of the proposed mechanism to explain heating of the X-ray loops expected to be on stars of late spectral types is discussed.  相似文献   

5.
The Doppler motions in a filament and the underlying photosphere over the several days before its eruption are analyzed. A large filament in the northern hemisphere near the central meridian observed from August 31-September 2, 2014 erupted on September 2, 2014. The filament lost the bulk of its mass as a result of its eruption, and the process of its reconstruction had begun a day later. Observations of this filament in a spectral range encompassing the Hβ λ 486.1 nm (chromospheric) and Fe I λ 485.9 nm (photospheric) lines were carried out on the Horizontal Solar Telescope of the Sayan Solar Observatory on August 31-September 2, 2014. Analysis of the Doppler motions in and beneath the filament yielded the following results. Strong rotational motions were present in the filament over a prolonged period (the entire three days of observations). The coincidence of the steady-state motions of the photosphere and filament was disrupted at the moment of destabilization of the filament by the emergence of new magnetic flux. Short-period (about five-minute) photospheric oscillationswith a train-like character arose in filament from time to time several hours before the eruption. Large segments underwent nearly vertical oscillations in the initial phase of the ascent of the filament.  相似文献   

6.
Observations of oscillations in the penumbras of seven sunspots are analyzed. High-sensitivity differential measurements of the line-of-sight velocity (11 time series) and variations of the Ni I 4857 Å and Hβ line profiles (four series) have provided new data making it possible to improve estimates of the amplitude and spectral characteristics of the oscillations. In the middle penumbras, oscillations of the line-of-sight velocity with fundamental periods of 5 and 8–10 min predominate at the photospheric level; their amplitude does not exceed 40–50 m/s, and the spatial coherence scale in the radial direction is no greater than 5″–10″. At frequencies of 0.5–2.0 mHz, the phase difference between the photosphere and chromosphere (NiI 4857 Å-Hβ) is close to 180°. The line-of-sight velocity component due to Evershed motions is responsible for oscillations with periods of 15–35 min, which occur synchronously at both heights.  相似文献   

7.
The basis is laid out for a theory relating various phenomena in the solar atmosphere, including localized concentrations of magnetic field at the bases of coronal magnetic arches, chromospheric spicules, twisted coronal magnetic flux tubes, and flows of energy carried by Alfvén waves propagating upward into the corona. The structure of photospheric currents localized in the vicinity of supergranule boundaries and excited by convective motions is studied. These currents exist primarily in a “dynamo layer” of sharply enhanced transverse conductivity, which forms in the weakly ionized thermal photospheric plasma located in the solar gravitational field. The motions of the electrons and ions in this layer have appreciably different characters: the ions are collisionly driven by the flows of neutral atoms, while the electrons drift in the crossed electric and magnetic fields. The electric field supporting the current arises due to the polarization of the electrons and ions. This field also gives rise to Alfvén perturbations that propagate upward into the corona, together with their associated longitudinal currents. The character of this “loading” makes the system of fields and currents uniquely defined. Moreover, the momentum flux carried by these Alfvén waves should be transferred to the cool chromospheric gas, facilitating the vertical ejection of this gas in the form of spicules, as was first proposed in 1992 by Haerendel.  相似文献   

8.
A comparative analysis of oscillatory spectra based on 66 time series for 14 active regions observed in 2001 shows that, although the chromospheric and photospheric oscillations in the Evershed flow zone possess many common features, there is no firm evidence that the direct and inverse flows have the same physical origin. The interactions between the various oscillation modes and stationary flows results in a complex pattern of wave motions in a sunspot. We studied the Doppler-velocity variations in the sunspot NOAA 0051 during its motion over the disk. The spatial-temporal distribution of the line-of-sight velocity in the chromospheric umbra displays a chevron structure, clearly indicating the presence of propagating waves. These waves move from the center of the umbra to outer regions with a phase speed of 45–60 km/s, a period of 2.8 min, and a measured Doppler speed of 2 km/s. The amplitude of these oscillations decreases abruptly at the boundary between the umbra and penumbra, and the observed waves are not directly related to propagating penumbral waves. Furthermore, the observed pattern of the photospheric velocities shows periodic motions (with a period of 5 min) directed from the inner boundary of the penumbra and superpenumbra toward the line of maximum Evershed velocity.  相似文献   

9.
The velocity field of the plasma in the solar photosphere beneath chromospheric Hα filaments is studied. Observations were conducted in 1999–2000 using the magnetograph and tachometer of the tower telescope of the Institute of Terrestrial Magnetism, Ionosphere, and Radio Propagation, recently upgraded to improve both its sensitivity and spatial resolution. The results confirm that, as noted earlier, filaments are frequently found near velocity-inversion lines between regions of upward and downward motion of solar material, and lie predominantly above regions with upward motion of photospheric material. This tendency is characteristic of both the stable filaments of active regions and quiescent filaments far from active regions, though it is more distinct for the former case. The upward motion of photospheric material beneath filaments may play an important role in supporting the filaments against gravity.  相似文献   

10.
Semi-empirical models for three kernels emitting in the continuum during the pre-impulsive and impulsive phases of the white-light flare of August 9, 2011 have been calculated, based on observations of the continuum brightness near 6579 Å, Hα profiles, and photospheric iron lines. These computations show that, in order to achieve agreement between the computed and observed profiles and the contrast of the continuum emission of the impulsive kernels of the white-light flare, the temperature must be increased in both the lower chromosphere and the upper photosphere. The most efficient heating is located deeper in the photosphere in the pre-impulsive than in the impulsive phase, and chromospheric heating is negligible in the pre-impulsive phase. Spectral data and the results of model computations indicate that it is difficult to explain the emission of the white-light flare kernels as the effect of heating by energy transported from the corona into lower-lying, deep layers of the atmosphere by canonical transport mechanisms.  相似文献   

11.
Episodic observations of coronal holes were carried out simultaneously in several spectral lines during the 2002–2005 observational seasons. An analysis of eighteen time series is used to obtain the amplitude—spectral properties of oscillatory wave motions of the solar plasma at the bases of coronal holes. It is found that the amplitudes of the 5-min and 3-min line-of-sight velocity oscillations increase in coronal holes. Low-frequency (1–2 mHz) oscillations are concentrated at the boundaries of the chromospheric network, while the 3-mHz and 5-mHz oscillations dominate in the network cells. Clear indications of propagating waves have been found at the bases of coronal holes. The 3 mHz phase velocities are 45 ± 5 km/s and 80–100 km/s for the equatorial and polar coronal holes, respectively.  相似文献   

12.
The spectra of radial-velocity oscillations in the immediate vicinity of a sunspot beyond the observable boundary of the penumbra have been analyzed. The radial velocities were derived using a differential method. The oscillation spectra at two heights (lower photosphere and chromosphere) were compared with reference spectra for the middle penumbra and an unperturbed region obtained using the same method. The oscillatory regime characteristic of the sunspot penumbra extends more than 15″ beyond its observable boundary. It is proposed that deep photospheric layers in the region surrounding the penumbra have physical conditions similar to those observed inside its outer boundary.  相似文献   

13.
Modulations of the microwave emission of the Sun at 11.7 GHz have been studied using more than 40 events observed in 2001 at the Mets?hovi Radio Observatory. In nearly all the observed events, low-frequency modulations with periods of 3–90 min were detected. As a rule, simultaneous modulation of the emission at several frequencies was observed. One possible origin of such modulations with periods 5–10 min is parametric resonance arising in coronal magnetic loops as a result of interactions with the 5-min photospheric oscillations, while the long-period modulations could be a manifestation of sunspot oscillations. Torsional (ϑ-mode) and radial (r-mode) oscillations have such periods. The frequency of occurrence of oscillations with the determined periods is considered, and a lower limit for the brightness temperature of the oscillations is estimated.  相似文献   

14.
Quasi-periodic modulations of the microwave emission from solar outbursts at 37 GHz are studied based on 17 events observed in 1989–2000 at the Metsähovi Observatory. Low-frequency modulations with periods of ~5 min were found in approximately 90% of the observed microwave outbursts. The most likely origin of this modulation is modulation of the current flowing along a closed coronal magnetic loop due to the five-minute oscillations of the photospheric-convection velocity. In approximately 70% of the cases, oscillations with periods ~10 min were observed simultaneously with the five-minute oscillations in the same events. In 30% of the cases, simultaneous modulation of the microwave emission by three low-frequency signals with periods of 3, 5, and 10 min was observed. One possible origin of these “double” and “triple” modulations is parametric excitation of acoustic oscillations with periods of 10 and 3 min in a closed coronal magnetic loop as a result of coupling with the five-minute photospheric oscillations. This can occur when the period of the natural acoustic oscillations of the closed magnetic loop is about 10 min (the resonance condition). Since the ten-minute oscillations are excited more easily than the three-minute oscillations at the parametric instability, the latter are observed less frequently. For the same reason, the observed linewidth of the ten-minute oscillations is considerably greater than that of the three-minute oscillations.  相似文献   

15.
Spectral observations of the 639.361-nm FeI line at the center of the quiet solar disk with high spatial (0.4″) and temporal (10 s) resolution are used to investigate the behavior of local 5-min oscillations over granules and intergranular lanes. The power of the 5-min oscillations in the upper photosphere (at heights of H ≈ 490 km) is higher the faster the convective motions in the lower photosphere (H ≈ 10 km). This suggests that turbulent convection is responsible for the excitation of local solar oscillations. A statistical analysis of the oscillations shows that, on average, both the intensity and velocity of the oscillation amplitudes are greater over intergranular lanes. This difference in amplitudes is present throughout the studied heights in the photosphere (H = 0?490 km). The period at which the power spectrum of velocity oscillations reaches its maximum is longer over intergranules than over granules. Simulations of the propagation of acoustic-gravity waves in an atmosphere taking into account the convection pattern give a satisfactory explanation for the above observed effects. It is concluded that the atmospheric modulation of the 5-min oscillations is an additional or alternative mechanism responsible for differences between these oscillations over granules and intergranules.  相似文献   

16.
Bright bands are observed along filaments in the He I 1083 nm line, while both bright and dark bands are observed along Hα 656.3 nm filaments. The range of brightness variations near He I filaments is 1.005–1.10 times the unperturbed brightness, with an average of 1.031 ± 0.01, while this range is 0.91–1.5 times the unperturbed brightness for Hα filaments. The physical state of the matter in these bands is investigated. Computations of the band brightness have been carried out for various chromospheric models, aimed at explaining the observed features of the bands. Two types of models are considered: with temperature or density variations in the upper chromosphere, and with temperature variations in the middle and lower chromosphere. In the first type of model, the brightness in the He I line is changed, but the Hα brightness is not. In the second type of model, only the Hα brightness is changed. Using the variations of the chromospheric parameters and both types of models, we obtained various combinations of band brightnesses in the He I line and in Hα. The brightnesses of regions were estimated by calculating the profiles of the He I and Hα lines in the corresponding models in a non-LTE approximation. A comparison of the observed and calculated quantities indicates that the enhancement in the brightness in the He I line is due to a decrease in temperature or density in the upper chromosphere (where the temperatures are about 10 000–24 000 K). The enhancement and dimming of the brightness in Hα are due to an increase or decrease of the temperature in the middle and lower chromosphere (where the temperatures are 6000–9000 K) by 800–1000 K. The dependence of the band brightness on distance from the center of the solar disk is also considered. The brightness in the He I line increases from the center to the limb by 2–4%. Computations of the center–limb brightness variaions correspond to the observed results.  相似文献   

17.
The detailed measurements of Call K line profiles along a diameter of the solar disk are presented. The obtained limb-darkening curves are used to test three semi-empirical models for the quiet Sun assuming moderate resolution. The calculations were carried out using the non-LTE code MULTI, taking into account a partial frequency redistribution. A comparative analysis of the measured and computed curves shows that the behavior of the Call K profiles from the center to the limb is sensitive to the temperature distributions of the semi-empirical models. The SRPM 305 model published by Fontenla et al. (2007) best reproduces the observed limb darkening in the region from the photosphere to the lower chromosphere; however, the agreement of this model with the observations at the line center is worse than for the other models, since this model was not assigned to describe hot chromospheric layers.  相似文献   

18.
The locations of sites of primary energy release of solar flares are studied. Magnetic singularities revealed earlier—self-intersections (reconnections) of F = 0 surfaces, where F is a differential factor determining the structural singularity in a potential magnetic field—are considered as possible sites of energy release. Six flare events demonstrating paired sources of non-thermal hard X-rays emission observed on March 17, 2002, July 17, 2002, April 6, 2004, November 4, 2004, November 6, 2004, and December 1, 2004 are analyzed for probable singularities. In each event analyzed, each source of non-thermal hard X-rays emission can be associated with an individual magnetic singularity; in other words, there is a magnetic-field line passing near the singularity and ending near (i.e. within about 10″) the source located on the photosphere (in the chromosphere). For the homologous flares observed on November 4 and 6, 2004, the same magnetic singularity is responsible for the source of non-thermal hard X-rays emission observed in the eastern sector of the flare region on November 4 and the source observed in the western part on November 6. A proposed interpretation associates these observations with a reversal of the electric field generated in the magnetic singularity on November 6, compared with the electric field generated on November 4, attributed to corresponding changes occurring in the photospheric magnetic field.  相似文献   

19.
Chelpanov  A. A.  Kobanov  N. I. 《Astronomy Reports》2020,64(4):363-368
Astronomy Reports - We applied a new approach to measure the time delays of magnetohydrodynamic waves propagating in the solar atmosphere. A small flare in the flare region of the chromosphere...  相似文献   

20.
Space spectral analysis of zonal (u) and meridional (v) components of wind and time spectral analysis of kinetic energy of zonal waves at 850 hPa during monsoon 1991 (1st June 1991 to 31st August 1991) for the global belt between equator and 40°N are investigated. Space spectral analysis shows that long waves (wavenumbers 1 and 2) dominate the energetics of Region 1 (equator to 20°N) while over Region 2 (20°N to 40°N) the kinetic energy of short waves (wavenumbers 3 to 10) is more than kinetic energy of long waves. It has been found that kinetic energy of long waves is dominated by zonal component while both (zonal and meridional) the components of wind have almost equal contribution in the kinetic energy of short waves. Temporal variations of kinetic energy of wavenumber 2 over Region 1 and Region 2 are almost identical. The correlation matrix of different time series shows that (i) wavenumber 2 over Regions 1 and 2 might have the same energy source and (ii) there is a possibility of an exchange of kinetic energy between wavenumber 1 over Region 1 and short waves over Region 2. Wave to wave interactions indicate that short waves over Region 2 are the common source of kinetic energy to wavenumber 2 over Regions 1 and 2 and wavenumber 1 over Region 1. Time spectral analysis of kinetic energy of zonal waves indicates that wavenumber 1 is dominated by 30–45 day and bi-weekly oscillations while short waves are dominated by weekly and bi-weekly oscillations. The correlation matrix, wave to wave interaction and time spectral analysis together suggest that short period oscillations of kinetic energy of wavenumber 1 might be one of the factors causing dominant weekly (5–9 day) and bi-weekly (10–18 day) oscillations in the kinetic energy of short waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号