首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AVS/D半主动振动控制结构的抗震设计方法探讨   总被引:1,自引:0,他引:1  
本文介绍了AVS/D半主动控制系统的工作原理,参照现行抗震设计规范的设计思想,提出了AVS/D半主动控振结构的抗震设计方法,并针对具体结构控制系统的工作性能,探讨了结构设计中关键参数:主体结构的地震力折减系数和薄弱层层间位移相对控制率的确定方法,最后通过实例分析验证了该方法的可行性。  相似文献   

2.
首先,在简述已有隔震体系抗震设计方法的基础上,分析了滞变一摩擦隔震体系各种因素对基底剪力的影响;然后,通过大量仿真分析,采用多项式回归的方法提出了与规范衔接的水平地震作用的计算公式;最后,提出了梯队式变刚度滞变一摩擦隔震体系的抗震设计方法,并通过工程实例验证了方法的有效性。  相似文献   

3.
整体强制反应位移法采用土-结构相互作用模型,将地震作用下的土层位移以强制位移的方式施加到整个土层上,从而计算结构在地震作用下的响应。本文以天津某地铁盾构隧道为例,采用整体强制反应位移法进行地铁盾构隧道结构的抗震分析计算。为了验证该方法在复杂软土场地下盾构隧道结构抗震分析中的适用性,以时程分析法为基准,对比分析整体强制反应位移法、反应位移法和时程分析法3种方法计算出的盾构隧道结构内力图和内力峰值。研究表明,整体强制反应位移法具有较好的适用性及易操作性,具有较高的计算精度,是一种方便有效的抗震设计拟静力方法。  相似文献   

4.
Effectiveness of a new semiactive independently variable stiffness (SAIVS) device in reducing seismic response of sliding base isolated buildings is evaluated analytically and experimentally. Through analytical and experimental study of force—displacement behaviour of the SAIVS device, it is shown that the device can vary stiffness continuously and smoothly between minimum and maximum stiffness. Passive sliding base isolation systems reduce interstorey drifts and superstructure accelerations, but with increased base displacements, which is undesirable, under large velocity near fault pulse type earthquakes. It is a common practice to incorporate non‐linear passive dampers into the isolation system to reduce bearing displacements. Incorporation of passive dampers, however, may result in increased superstructure accelerations and drifts; while, properly designed passive dampers can be beneficial. A viable alternative is to use semiactive variable stiffness systems, which can vary the period of the sliding base isolated buildings in real time, to simultaneously reduce bearing displacements and superstructure responses further than the passive systems, which deserves investigation. This study investigates the performance of a 1:5 scaled smart sliding base isolated building model equipped with the SAIVS device analytically and experimentally, under near fault earthquakes, by developing a new moving average non‐linear tangential stiffness control algorithm for control of the SAIVS device. The SAIVS device reduces bearing displacements further than the passive cases, while maintaining isolation level forces and superstructure responses at the same level as the passive minimum stiffness case, indicating the significant potential of the SAIVS system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
本文研究沿高度变刚度混凝土灌芯纤维石膏墙板结构(以下简称复合墙板结构)在水平荷载作用下的受力机理,建立简化计算模型,推导出了复合墙板结构的受力破坏路径,并建立了各阶段内力计算方法及计算公式。通过实例计算,得到沿高度均匀结构以及非均匀结构在水平荷载情况作用下位移的曲线与非均匀结构的受力破坏路径。结果表明,沿高度适当改变灌芯方式,侧移曲线更趋合理;各区段结构破坏路径均是石膏板先开裂且先达到极限状态。  相似文献   

6.
磁流变变阻尼半主动控制结构的仿真分析   总被引:6,自引:2,他引:6  
由于高阶单步法已成功地应用于结构非线性分析及考虑时滞的主动控制等,显示了它的稳定、精度高和计算迅速等特点。用于结构振动控制的磁流变阻尼器属于速度相关型变阻尼半主动控制器,已有的一些算法,或因计算时间过长不能用于实际控制,或因需要事先经过学习训练,控制效果取决于训练学习的情况。因此,本文将高阶单步法应用于磁流变变阻尼半主动控制系统,采用开关控制和连续控制两种控制率对磁流变液的剪切强度进行调节。仿真计算表明,该控制算法是一种能用于结构实际控制的变阻尼有效算法.  相似文献   

7.
本文在空间上采用有限元法。在时域上采用离散的方法。建立了用扩阶随机有限元方法求解含随机参数粘弹性问题的计算模型,并给出了算例。结果表明,本文解和Monte-Carlo模拟解吻合。  相似文献   

8.
对砌块砌体结构进行Push—over分析,其结果准确与否和结构的极限性态目标位移的可靠确定关系很大。本文基于大量的配筋砌块砌体墙片试验结果,对直接基于位移的抗震设计法进行改进,使之能够用于砌块砌体结构的极限性态目标位移的确定。用改进的方法求解一座1/4比例的10层砌块砌体模型结构的极限性态目标位移,并与该模型结构的振动台试验结果进行比较。结果说明本文提出的改进方法是可以应用于求解砌块砌体结构的极限性态目标位移的。  相似文献   

9.
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel‐brace‐link system to represent those with good ductility capacity and then retrofitted with RC squat infill shear panels (SISPs) to represent those with relatively poor ductility capacity. The evaluation of the DCM of FEMA 440 and associated NLSP is then performed by comparing the roof displacements (target displacements), maximum interstory drifts, and maximum plastic hinge rotations of the original and retrofitted buildings obtained from NLSP (at the target displacement level of DCM) with those obtained from nonlinear response history (NRH) analyses for three different seismic performance levels. It is observed that the DCM, and hence, the NLSP fail to accurately predict the NRH analyses results mainly due to uncertainties in the coefficient C1 of the DCM in the short period range, the inability of the DCM to capture the failure of structural members beyond a certain lateral displacement or plastic rotation limit and associated soft story mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.  相似文献   

11.
A magnetorheological (MR) damper has been manufactured and tested and a non‐linear model is discussed. The parameters for the model are identified from an identification set of experimental data; these parameters are then used to reconstruct the force vs. displacement and the force vs. velocity hysteresis cycles of the MR damper for the hysteretic model. Then experiments are conducted on a three‐storey frame model using impact excitation, which identifies dynamic parameters of the model equipped with and without the MR damper. Natural frequencies, damping ratios and mode shapes, as well as structural properties, such as the mass, stiffness and damping matrices, are obtained. A semi‐active control method such as a variable structure controller is studied. Based on the ‘reaching law’ method, a feedback controller is presented. In order to evaluate the efficiency of the control system and the effect of earthquake ground motions, both numerical analysis and shaking table tests of the model, with and without the MR damper, have been carried out under three different ground motions: El Centro 1940, Taft 1952, and Ninghe 1976 (Tangshan Earthquake in Chinese). It is found from both the numerical analysis and the shaking table tests that the maximum accelerations and relative displacements for all floors are significantly reduced with the MR damper. A reasonable agreement between the results obtained from the numerical analysis and those from the shaking table tests is also observed. On the other hand, tests conducted at different earthquake excitations and various excitation levels demonstrate the ability of the MR damper to surpass the performance of a comparable passive system in a variety of situations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The distinct element method (DEM) has been used successfully for the dynamic analysis of rigid block systems. One of many difficulties associated with DEM is modeling of damping. In this paper, new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid multi-block systems. The stiffness proportional damping is constructed for the prescribed damping ratio, based on the non-zero fundamental frequency effective during the time interval while the boundary conditions remain essentially constant. At this time interval, the fundamental frequency can be estimated without complete eigenvalue analysis. The damping coefficients will vary while the damping ratio remains the same throughout the entire analysis. A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases. These procedures were implemented in the development of the distinct element method for the dynamic analyses of piled multi-block systems. The analysis results for the single-block and two-block systems were in a good agreement with the analytic predictions. Applications to the seismic analyses of piled fourblock systems revealed that the new procedures can make a significant difference and may lead to much-improved results.  相似文献   

14.
This work discusses the simplified estimation of earthquake‐induced nonlinear displacement demands as required by nonlinear static procedures, with particular attention on short‐period masonry structures. The study focuses on systems with fundamental periods between 0.1 and 0.5 s, for which inelastic amplification of the elastic displacement demand is more pronounced; hysteretic force‐displacement relationships characteristic of masonry structures are adopted, because these structures are more commonly found within the considered period range. Referring to the results of nonlinear dynamic analyses of single‐degree‐of‐freedom oscillators, some limitations of the Eurocode 8 and Italian Building Code formulations are first discussed, then an improved equation is calibrated that relates inelastic and elastic displacement demands. Numerical values of the equation parameters are obtained, considering the amount of hysteretic energy dissipation associated with various damage mechanisms observed in masonry structures. Safety factors are also calculated to determine several percentiles of the displacement demand. It is shown that the proposed equation can be extended to more dissipative systems. Finally, the same formulation is adapted to the estimation of seismic displacements when elastic analysis procedures are employed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical nonlinear damping, including the special case of velocity power type damping with a bilinear restoring force model. Based on the energy approach, the stability of the AAM is proven for SDOF structures using the mathematical features of the velocity power function and for MDOF structures by applying the virtual displacement theorem. Finally, numerical examples are given to demonstrate the accuracy of the theoretical analysis.  相似文献   

16.
为提高变截面梁地震动力求解的计算效率,提出了基于离散时间传递矩阵法的时程分析方法。首先,从欧拉梁的偏微分振动方程出发,基于逐步时间积分法的线性化方法并结合张量变换原理,建立了变截面梁的动力时程计算方法;其次,考虑地震动激励的非一致输入效应,采用数值迭代求解的方式建立了变截面梁地震动力时程分析的离散时间传递矩阵算法;最后,编制了数值仿真计算程序,并结合具体算例进行了算法的有效性和高效性验证。算例结果表明:在采用相同计算模型的前提下,离散时间传递矩阵法不仅能够在计算精度方面与有限元法保持一致,同时还拥有更高的计算效率。  相似文献   

17.
多点激励下结构随机地震反应分析的反应谱方法   总被引:9,自引:3,他引:6  
基于随机振动理论,提出了多点激励作用下线性系统随机地震反应分析的均值反应谱方法,给出了结构峰值反应的均值、标准差以及反应平均频率的反应谱组合公式。这可以将反应谱方法推广应用到多点激励结构的抗震可靠度分析中。鉴于组合公式中谱参数和相关系数需要由烦琐的数值积分得到,本文进一步针对它们给出合理的简化计算式,从而使得建议的反应谱方法的计算效率大大增加。最后,以一个双塔斜拉桥为例,对本文方法进行了验证。基于建议方法的计算结果与Monte Carlo模拟结果吻合较好。与经典的多点激励反应谱方法(MSRS法)比较,本文方法具有其无法比拟的计算效率。  相似文献   

18.
多点输入下大跨结构反应谱分析方法研究进展   总被引:4,自引:0,他引:4  
在大跨度结构的抗震研究领域,多点输入反应谱方法因其形式简洁、物理意义明确、应用方便等优点而获得了广泛重视和迅速发展,并已在一些重大工程项目的抗震分析中得到了应用。本文首先详细阐述了近年来国内外多点输入反应谱分析方法的研究现状;然后介绍了多点输入反应谱法的应用情况,包括基于该方法进行的大跨度结构地震反应分析和抗震可靠度分析;最后,提出了今后研究中一些需要进一步解决的问题。  相似文献   

19.
使用Kanai-Tajimi地震动模型,建立了主动调谐质量阻尼器(ATMD)结构系统的传递函数。将ATMD最优参数的评价准则定义为:设置ATMD结构均方根位移(解析式)的最小值的最小化。将ATMD有效性的评价准则定义为:设置ATMD结构均方根位移的最小值的最小化与未设置ATMD结构的均方根位移之比。根据逃择的评价准则,评价了地震卓越频率系数(EDFR)对ATMD抗震控制性能的影响。同时也评价了EDFR对被动调谐质量阻尼器(PTMD)抗震控制性能的影响。  相似文献   

20.
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号