首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
安徽巢北地区的中生代构造变形及其大地构造背景   总被引:8,自引:0,他引:8  
安徽巢北地区位于晚中生代华北高原的东部、郯庐断裂东侧、苏鲁高压—超高压造山带南侧的扬子地块下扬子前陆褶断带北缘,其演化受这个大地构造背景制约,形成了“两向一背”叠加棋盘格式断裂的特征构造样式。这种明显的构造样式和一些隐式构造变形是多幕变形的结果。该区中生代经历了印支期三幕褶皱、三幕逆冲推覆变形。其中第一幕变形发育以下志留统高家边组为主要低角度逆掩拆离面(主拆离面或主滑脱面)和局部相关断展、断滑褶皱为主;第二幕变形才形成该区“两向一背”的褶皱格局和由北西向南东逆冲的叠瓦式逆冲断裂组合,第三幕变形主要为宽缓的北西西轴向的褶皱和近东西向逆冲断裂。至燕山中期又经历了一幕南北向褶皱叠加,燕山晚期的北西向正断层活动在该区表现为倾向北东的多米诺式正断层组合,区域上控制了上白垩统的沉积空间。区域对比表明,印支期变形与苏鲁—大别造山带的构造变形是一致的,说明其动力机制上的相关性,与高压—超高压岩石折返相关;燕山期变形动力与古太平洋板块向西的俯冲和中国东部逃逸构造相关。  相似文献   

2.
桐柏碰撞造山带及其邻区变形特征与构造格局   总被引:3,自引:2,他引:1  
桐柏碰撞造山带及其邻区可以划分为九个大地构造单元,自北向南分别是:华北克拉通南缘岩石构造单元——宽坪岩群、具弧后盆地性质的二郎坪岩石构造单元、具岛弧性质的秦岭杂岩单元、龟山岩组和南湾岩组构成的俯冲前缘楔构造带、构造混杂岩带、桐柏北部高压岩片单元、桐柏核部杂岩单元、桐柏南部高压岩片单元以及随州构造变形带。根据详细的构造解析以及新的地质年代学资料,本文将中生代以来的构造变形划分为五幕,前两幕变形主要发育在构造混杂岩带以南的各个岩石构造单元中,之后的三幕变形则波及整个研究区。第一幕变形的时间约为255~238Ma,以发育区域上透入性的片理及北西西向的拉伸线理为主,并导致了高压岩片早期自西向东的挤出。第二幕变形的时间约为230~215Ma,以自北向南的逆冲推覆构造为主,使得高压岩片进一步垂向抬升。第三幕变形应早于下侏罗统,以近北西西向的宽缓褶皱为主要特征,该幕变形期间桐柏核部杂岩及其两侧高压岩片单元发生同步的抬升。第四幕变形大致发生在140~130Ma之间,主要表现为桐柏核部杂岩两侧走滑型韧性剪切带的活动,桐柏核部杂岩表现出向东的挤出。第五幕变形发生在120~80Ma,表现为北西向及北东向的脆性断裂活动,并切割以上所有构造形迹。桐柏高压岩片的抬升剥露受多幕变形控制,呈阶段性的抬升。  相似文献   

3.
陆元超  朱光  尹浩  张帅  牛漫兰 《地质学报》2022,96(10):3410-3425
郯庐断裂带起源于华北克拉通与扬子板块的汇聚过程中已被多数学者所认同。该断裂带的起源机制,涉及到这两个大陆板块的汇聚方式。可是,对于这一重要问题却长期存在着不同的认识。本文依据郯庐断裂带内部及其两侧前陆上构造与年代学研究成果,综合分析该断裂带的起源机制。郯庐断裂带内部残留的起源期构造为左行走滑韧性剪切带,所获得的白云母40Ar/39Ar同位素年龄为239~217 Ma。华北克拉通边缘的徐淮弧形逆冲-推覆构造,及九江地区扬子板块上的弧形褶皱带,分别为苏鲁造山带、大别造山带点碰撞的产物。郯庐断裂带西侧的华北克拉通边缘,在汇聚过程中呈现为刚性陆块的特征,没有出现大规模的牵引弯曲现象。而东侧的扬子板块前陆构造,在汇聚过程中却明显出现了大规模的牵引弯曲现象。断裂带东侧的张八岭隆起北段,出露了扬子板块上中地壳韧性拆离带,其中所获得的白云母40Ar/39Ar同位素年龄为245~218 Ma,其滑动方向受控于郯庐断裂带起源期的左行走滑运动。这一系列构造与年代学信息,表明郯庐断裂带起源于华北克拉通与扬子板块的汇聚过程中,代表了这两个大陆的斜向汇聚边界。该断裂带起源期的活动时限,与大别、苏鲁造山带内大陆深俯冲时间相吻合。在大别造山带北部的华北克拉通,原始应存在着向南的突出体(嵌入体),从而导致嵌入式碰撞与嵌入体边界的大陆斜向汇聚(起源期郯庐断裂带),符合嵌入式碰撞导致板片撕裂模式。  相似文献   

4.
张八岭构造带是大别造山带的一部分,是造山带中上地壳出露地区。通过运用构造-地层学的理论和方法,以及对张八岭地区1:5万地质填图资料的分析和典型地区的构造解剖,认为:区内张八岭(岩)群与南华系—震旦系及其以上地层之间不存在强烈的构造运动界面,其作为大别造山带的组成部分发生了强烈的变形作用;印支—燕山早期区内主要存在3期构造变形:早期为一系列呈NXVW、近EW向的紧闭同斜褶皱,中期以韧性剪切带发育为特征,晚期以NW向SE的逆冲推覆作用伴生NNE向为主的宽缓褶皱。三期变形相互叠加,形成区内基本构造格架。伴随着扬子地块向华北地块的俯冲与碰撞,中上部地壳发生褶皱、逆冲推覆(前缘滑覆)作用等,三期变形为一递进变形过程。  相似文献   

5.
北祁连山俯冲杂岩带的韧性剪切作用   总被引:5,自引:0,他引:5  
北祁连山加里东褶皱带中的蓝片岩(包括蓝闪片岩和榴辉岩)产于原岩为中寒武统的典型蛇绿俯冲杂岩带之中,是北祁连古板块缝合线的标志之一。蓝片岩带中强烈的韧性剪切变形作用代表了本区古板块持续俯冲到碰撞过程中地壳深部层次的变形行为。构造分析表明,该蛇绿混杂岩带经历了早、晚两期韧性剪切变形的改造。其中早期韧性剪切变形(DF_1)与区域D_2变形幕有关,蓝闪片岩相矿物(蓝闪石、石榴子石、绿帘石和多硅白云母)是伴随变形叶理生长的同构造产物。晚期韧性剪切变形与区域D_3变形幕有关,伴随有绿泥石、冻蓝闪石等的出现和石英、方解石的动态重结晶作用。运动学指示标志,如拉伸线理、与拉伸线理平行的各种褶皱枢纽、同构造变斑晶的旋转、S-C组构及石英光轴组构等,都清楚地显示DF_1运动方向为南东-南南东,伴有左行旋转,晚期DF_2为由NE向SW的逆冲剪切,伴有右行旋转。方解石和石英光轴组构表明晚期逆冲剪切的古挤压应力方向为北北东-南南西。  相似文献   

6.
扬子板块北缘中段前陆褶皱逆冲带在中生代经历了多期的构造叠加和改造,其复杂的构造样式记录了早期扬子板块与秦岭-大别微板块拼贴碰撞作用以及晚期转入的陆内变形过程。本文在前人研究的基础上通过对扬子板块北缘中段保康-房县地区前陆带构造变形样式及运动学特征的分析,划分出扬子板块北缘前陆褶皱逆冲带的根部、前锋及其内部次级的逆冲推覆构造单元,同时识别出一条过保康-神农架-蒲溪一带近东西走向的左行走滑剪切带,分析表明该左行走滑带形成于扬子板块北缘全面转入陆内变形之后、大巴山大规模向南西逆冲推覆运动之前的中侏罗世到晚侏罗世期间。该左行走滑剪切带对扬子板块相对于华北板块发生顺时针旋转的过程起到了调节作用,对于扬子板块北缘中生代构造演化具有重要意义。  相似文献   

7.
鞍山地区太古宙地壳的构造演化序列   总被引:1,自引:0,他引:1  
鞍山地区的太古宙变质岩,主要由花岗质岩石(约占90%)和表壳岩(含铁岩系)组成。其中花岗岩包括铁架山花岗岩和弓长岭花岗岩,表壳岩由磁铁石英岩和绢云绿泥石石英片岩组成。表壳岩沉积年龄大于3000Ma,铁架山花岗岩侵位于2900Ma,稍后即发生第一幕韧性变形,在铁架山花岗岩中发育了NE走向片麻理,在表壳岩中形成同斜褶皱及轴面片理S_1。2600Ma左右弓长岭花岗岩侵位,稍后又发生第二幕韧性变形,产生了NNW逆向剪切带和NEE走滑剪切带,这时含铁岩系中形成平行韧性剪切带的片理S_2。2000Ma发生第三幕韧性变形,其中NEE和NNW向剪切性质与第二幕恰好相反。以上三幕韧性剪切序次,相对应的形成了片麻岩、糜棱岩和构造片岩。  相似文献   

8.
胶辽地块是华北克拉通东部地块的重要组成,处于北倾的大别-苏鲁构造带的上盘。过去近十年来提出的几个关于东北亚构造演化的重要构造模型涉及到了胶辽地块。本文主要利用我们在辽东半岛南部地区获得的SHRIMP U-Pb锆石定年结果,结合华北克拉通东部野外地质调查的野外第一手资料、我们获得的渤海湾盆地中的中生代构造资料以及其它研究人员的SHRIMP定年资料,系统建立华北克拉通东部地块中生代的构造变形过程,并讨论相关构造模型或构造问题。最近SHRIMP定年研究发现,胶辽地块中古元古代地质体经历了~160 Ma的重熔事件。CL和BSE图象显示,在辽南新太古宙地块附近丹东花岗岩体的两个样品LJ023和LJ030中发现一些167~157Ma的自形岩浆锆石和围绕年龄大约为2100 Ma核部锆石的岩浆型锆石环带。这次重熔事件很可能为华北克拉通的下地壳原地重熔。丹东岩体呈NE走向排列,经历了强烈的近水平韧性剪切变形和随后NNE走向的褶皱变形。本文以丹东地区为例,准确确定了这些变形的年龄。根据辽东半岛东西向剪切带中白云母K-Ar和~(40)Ar/~(39)Ar年龄,第一幕变形界定在195~193 Ma之间。根据野外侵入体与变形叶理之间的关系,丹东花岗岩遭受的第二幕变形发生于153~145Ma之间。第三幕变形,也即为NNE向走滑作用,约束在135Ma~95Ma  相似文献   

9.
内蒙古白乃庙逆冲推覆构造特征及其地质意义   总被引:1,自引:0,他引:1  
白乃庙逆冲推覆构造自四子王旗北东的十二台向东经白乃庙、博日和延至化德地区,大致沿北纬42°线东西向延伸超过190 km。它发育于华北克拉通与其北侧的奥陶纪白乃庙岛弧带之间,成为华北克拉通与北缘增生带的构造界线,是一套较为典型的陆缘褶冲带。它表现为华北克拉通北缘的中-新元古界白云鄂博群向北逆冲于白乃庙群及其弧后盆地的上志留统徐尼乌苏组和顶志留统西别河组之上。根据构造变形解析并结合音频大地电磁测深资料(CSAMT),得出白乃庙逆冲推覆构造由一系列分支逆断层组成,并向深部于120~800 m处交汇成主底板断层,构成一套叠瓦式逆冲推覆构造,并发育规模不同的构造窗和飞来峰。根据构造窗与飞来峰之间的距离,提出逆冲位移量大于14 km。通过线理及褶皱枢纽统计,指出白乃庙逆冲推覆构造的逆冲方向为自南向北。依据逆冲岩席中发育的断夹块的叠置关系及构造岩的特征,认为其经历了两个期次的活动。对断裂带内同构造形成的包裹石英透镜体的白云母分别进行了Rb-Sr和Ar-Ar同位素测年,认为白乃庙逆冲推覆构造早期活动于450~410 Ma,是白乃庙岛弧带与华北板块碰撞的构造反映。白乃庙逆冲断层晚期活动于晚二叠世至早三叠世,是古亚洲洋最终闭合的构造表现,亦印证研究区经历了印支期构造运动。  相似文献   

10.
新疆南天山科克苏河地区构造变形特征   总被引:1,自引:0,他引:1  
本文通过对南天山科克苏河地区构造变形特征的研究,总结出会聚板块边界造山运动过程中构造变形的演化规律为:造山运动早期,板块俯冲作用促成俯冲杂岩发生蓝片岩相变质作用的同时,发育深层次韧性挤压变形构造;俯冲作用停止后,蓝片岩抬升、拆返过程中遭受韧性挤压变形叠加;造山运动晚期,则发育大规模韧性逆冲构造和韧性平滑走滑构造;造山运动末期,发育浅层次韧脆性开阔褶皱、区域性同斜倒转褶皱及逆冲断层。  相似文献   

11.
The western Dabie orogen (also known as the Hong'an block) forms the western part of the Dabie–Sulu HP–UHP belt, central China. Rocks of this orogen have been subjected to pervasive ductile deformation, and include numerous quartz schists and felsic mylonites cropping out in ductile shear zones. Quartz textures in these mylonites contain important clues for understanding the movement sense of late-collisional extrusion and exhumation of high-pressure–ultrahigh-pressure (HP–UHP) rocks from the lower crustal level to the upper crustal level during Middle Triassic and Early Jurassic. The orientation and distribution of quartz crystallographic axes were used to confirm the regional shear sense across the orogen. The asymmetry of c-axis patterns consistently indicates top-to-the-southeast thrusting across the orogen in early structural stages. Later stages of deformation show different senses of movement in northern and southern parts of the orogen, with top-to-the-northwest sinistral shearing recorded in rocks north of the Xinxian HP–UHP eclogite-facies belt, and top-to-the-southeast dextral shearing south of the same unit.Based on our study on quartz c-axis fabrics and marco- to micro-scale structures, simultaneous southeastward shearing within a large part of the orogen and normal faulting north of the Xinxian HP–UHP unit is explained by upward extrusion in early stages of deformation. The extrusion process has been attributed to syn- and late-collisional processes, accounting for some earlier deformation in the western Dabie orogen such as metamorphic sequences around the core of the Xinxian HP–UHP eclogite-facies unit. Much higher pressure of deformation is also indicated in the aligned glaucophane and omphacite from blueschist and eclogite in the field. An orogen-parallel eastward extrusion of the Xinxian HP–UHP eclogite-facies unit, however, occurred diachronously in later stages of deformation. Therefore, a tectonic model combining an early upward extrusion with a later eastward extrusion is presented. Two different stages and types of extrusion for exhumation of HP–UHP rocks are suitable to all of east central China. Geochronological data shows that the first, upward extrusion occurred during Middle Triassic, the second, eastward extrusion occurred during Late Triassic to Early Jurassic. These two extrusions are correlative with two stages of rapid exhumation of the Dabie HP–UHP rocks, respectively. These two-stage late-collisional (Middle Triassic to Early Jurassic) extrusion events bridge the gap between syn-collisional (Early to Middle Triassic) vertical extrusion and post-collisional (Cretaceous) eastward-directed lateral escape and provide vital clues to understanding the more detailed processes of exhumation of HP–UHP rocks.  相似文献   

12.
《地学前缘(英文版)》2020,11(5):1495-1509
The Qinling-Qilian connection zone(QQCZ) is a key area to reveal the relationship and to make a link of the North Qinling and the North Qilian orogens,China.Here we present U-Pb dating data of detrital zircons from four sedimentary/metasedimentary rocks in the QQCZ and the southwestern North China Block(NCB) and detailed regional structural data.Three episodes of fold deformation(D_1,D_2 and D3) are distinguished in the QQCZ,with the former two occurred during the early Paleozoic.The D_1 deformation is mainly characterized by regionally penetrative schistosity and some residual rootless intrafolial folds due to the intensive superpositions by the subsequent D_2 and D3 deformations.The D_2 deformation characterized by tight folds,associated axial plane foliations and crenulation lineations indicates a stress field characterized by NNE-SSW-directed compression,which may be induced by the collision between the NCB and the southern blocks.The D3 deformation which might occur during the Mesozoic is marked by upright open folds and kink bands.The similarity of the detrital zircon age spectra of the Huluhe Group in the North Qilian Orogen and the Erlangping Group in the North Qinling Orogen suggests that the two groups have similar provenance,which may indicate that the North Qilian Orogen corresponded to the North Qinling Orogen in a regional tectonic framework.In addition,the remarkable age peak at~435 Ma of the detrital zircon age spectrum of the Duanjiaxia Formation in the southwestern NCB indicates that this formation obtained the provenance of the North Qilian and North Qinling orogens,which may be generated by the collage of the southwestern NCB and the QQCZ during the Late Ordovician-Early Silurian.Based on structural,detrital zircon and metamorphic data,we suggest that the North Qilian and North Qinling orogens underwent similar evolution during the early Paleozoic due to the closure of the North Qilian and the Kuanping oceans which located at the northern boundary of the Proto-Tethys Ocean.  相似文献   

13.
The structural geometry of the Anasagar gneiss dome in the axial zone of the South Delhi Fold Belt is controlled by polyphase folding. It is classified as a thrust-related gneiss dome and not as a metamorphic core complex. Four phases of deformation have affected both the gneiss and the enveloping supracrustal rocks. D2 and D3 deformations probably represent early and late stages of a progressive deformation episode in a simple shear regime combined with compression. The contact between the gneiss and the supracrustal rocks is a dislocation plane (thrust) with top-to-east sense of movement which is consistent with the vergence of the D2 folds. The thrust had a ramp-and-flat geometry at depth. At the present level of exposure it is a footwall flat (that is, parallel to the gneissosity in the footwall), but it truncates the bedding of the hanging wall at some places and is parallel at others. The thrusting was probably broadly coeval with the D2 folds and the thrust plane is locally folded by D2. D2 and D3 folds have similar style and orientation as the first and second phases respectively of major folds in the Delhi Supergroup of the South Delhi Fold Belt and these are mutually correlatable. It is suggested that D1 may be Pre-Delhi in age. Available geochronological data indicate that the emplacement of the Anasagar gneiss predated the formation of volcanic rocks in the Delhi Supergroup and also predated the main crust forming event in the fold belt. The Anasagar gneiss and its enveloping supracrustal rocks are probably older than the Delhi Supergroup.  相似文献   

14.
Polyphase deformation chronologies established within the mid-crustal portions of orogenic belts have classically been attributed to regional-scale ‘events’ which generate distinct structural sequences that can be directly correlated across large tracts of the orogenic belt. However, concepts of progressive deformation in which minor structures may be continually generated, amplified and redeformed within a unifying kinematic framework suggest that regional correlation of minor structures is both misguided and misleading. Detailed structural analysis of lower amphibolite facies Dalradian metasediments in north-west Ireland does, however, demonstrate that a coherent and meaningful deformation chronology can be established within the framework of individual fold nappes. Protracted deformation has resulted in the generation of a series of overprinting, secondary structures (D4–D9), which are kinematically linked to the continued structural evolution and south-east directed translation of the crustal-scale (D3) Ballybofey (fold) Nappe. Secondary (D4) crenulation axes initiated at an oblique angle to the direction of nappe transport both rotate and amplify into larger scale folds, which are subparallel to transport and demonstrate successive stages of diachronous folding. Continued nappe-related deformation induces southwards verging contractional (D5) folds, which are particularly well developed and focused into reactivated ductile (D3) thrust zones generated during the initial stages of nappe translation. Subsequent to thickening-induced ductile extension and collapse of the nappe, a return to contractional tectonics is marked by major episodes of broad, open buckle folding developed orthogonal to both the overturned limb (D7) and upper limb (D8) of the nappe. Detailed structural analysis and investigation of secondary folds and overprinting fabrics provides a valuable insight into the protracted kinematic evolution of major fold nappes.  相似文献   

15.
闽西南安砂水库库区省道307的新路段清晰出露了上、下古生界,为研究闽西南地区中生代变形构造提供了良好条件.野外构造观测和构造复原表明上古生界发育3期褶皱:第一期呈NE向展布,两翼相对紧闭,发育特征的轴面片理;第二期呈NW向展布,相对宽缓,发育NW走向的透入性皱纹面理;第三期为近平行第一期褶皱的宽缓褶皱,尺度最大,伴有局...  相似文献   

16.
《Gondwana Research》2011,19(4):611-631
The Trans-North China Orogen separates the North China Craton into two small continental blocks: the Eastern and Western Blocks. As one of the largest exposure in the central part of the orogen, the Hengshan–Wutai–Fuping Complexes consist of four lithotectonic units: the Wutai, Hengshan and Fuping Complexes and the Hutuo Group. The Hengshan Complex contains high pressure mafic granulites and retrograded eclogites. Structural analysis indicates that most of the rocks in these complexes underwent three distinct episodes of folding (D1 to D3) and two stages of ductile thrust shearing (STZ1 between D1 and D2 and STZ2 after D3). The D1 deformation formed penetrative axial planar foliations (S1), mineral stretching lineations (L1), and rarely-preserved small isoclinal folds (F1) in the Hengshan and Fuping Complexes. In the Wutai Complex, however, large-scale F1 recumbent folds with SW-vergence are displayed by sedimentary compositional layers. Penetrative transposition resulted in stacking of thrust sheets which are separated by ductile shear zones (STZ1). The kinematic indicators of STZ1 in the Hengshan and Wutai Complexes show top-to-the-S230°W thrusting likely related to northeastward, oblique pre-collisional subduction. D1 resulted in crustal thickening with resultant prograde peak metamorphism. The Hutuo Group did not undergo the D1 deformation, either because sedimentation was coeval with the D1 deformation or because it was at a high structural level and was not influenced directly by the early deformation. The D2 deformation produced NW-verging asymmetric and recumbent folds. The D2 deformation is interpreted to have resulted from collision between the Eastern and Western Blocks of the North China Craton. In the Hutuo Group and the Fuping Complex, the development of ESE-verging asymmetric tight folds is associated with D2. The structural pattern resulting from superimposition of D1 and D2 is a composite synform in the Hengshan–Wutai–Fuping Complexes. All four lithotectonic units were superposed during the later D3 deformation. The D3 deformation developed NW-trending open upright folds. Ongoing collision led to development of transpressional ductile shearing (STZ2), forming the transpressional Zhujiafang dextral ductile shear zone between the northern Hengshan Complex and the southern Hengshan Complex, and generating the sinistral Longquanguan ductile shear zone between the Fuping Complex and the Wutai Complex, respectively. The STZ1 and D2 deformation were possibly responsible for fast syn-collisional exhumation of the high pressure mafic granulites and retrograded eclogites. The structural patterns and elucidation of the deformation history of the Hengshan–Wutai–Fuping Complexes places important constraints on the tectonic model suggesting that an oceanic lithosphere between the Eastern and Western Blocks underwent northeastward-directed oblique subduction beneath the western margin of the Eastern Block, and that the final closure of this ocean led to collision between the two blocks to form the coherent basement of the North China Craton.  相似文献   

17.
三江北段东莫扎抓矿区构造变形特征   总被引:3,自引:0,他引:3  
已有关于青藏高原隆升的各种构造模型多重视新生代变形而忽略了早期构造变形的限制.本文以三江北段东莫扎抓矿区为研究对象,通过详细的构造-岩相填图,恢复了矿区二叠纪以来变形序列,结合区域资料讨论了变形事件的大地构造背景.研究表明矿区发育中-下二叠统九十道班组灰岩、上二叠统那益雄组碎屑岩、上三叠统结扎群甲丕拉组碎屑岩和上三叠统结扎群波里拉组灰岩4套地层系统,二叠系与三叠系之间为不整合接触,局部被近南北向逆断层代替.北西向逆断层横亘矿区,断层上盘三叠纪碎屑岩和灰岩整体北倾,断层下盘三叠纪岩石被左右两条走滑断层夹持向南挤出.在图面和露头尺度上矿区叠加褶皱明显,南北向剖面上多见紧闭的倾伏褶皱,近东西向剖面上则为开阔水平的斜歪褶皱,表明南北向剖面上观察到的是已被叠加的早期褶皱,为矿区第一期变形,其形成与三叠纪末古特提斯洋盆闭合有关.始新世晚期印-亚大陆碰撞地壳缩短形成矿区第二期构造,即北西向逆断层和褶皱叠加.第三期近南北向逆断层可能形成于始新世末,与印-亚大陆碰撞引起的侧向旋转有关.  相似文献   

18.
华南板块早中生代陆内造山过程——以雪峰山-九岭为例   总被引:3,自引:1,他引:2  
褚杨  林伟  FAURE Michel  王清晨 《岩石学报》2015,31(8):2145-2155
雪峰山-九岭造山带位于华南板块的中心区域,是一条典型的陆内造山带。通过详细的野外地质观察,雪峰山在早中生代经历了3期构造变形:D1为上部指向NW的韧性剪切,D2代表了一期反向褶皱-逆冲构造事件,以及D3期的水平挤压形成的直立的褶皱、劈理和线理。而在九岭,早中生代大规模脆-韧性域构造变形叠加在早古生代韧性变形之上,形成了一系列极性NW逆冲断层和不对称褶皱。雪峰山-九岭陆内造山带形成于早中生代,造山作用可以分为两个阶段,即245~225Ma的挤压变形阶段和225~215Ma的垮塌-岩浆侵位阶段。雪峰山-九岭造山带的构造特点表明,华南板块东南缘古太平洋板块向北西方向的俯冲可能引发了早中生代的陆内造山过程。  相似文献   

19.
The Beit Bridge Complex of the Central Zone (CZ) of the Limpopo Belt hosts the 519 ± 6 Ma Venetia kimberlite diatremes. Deformed shelf- or platform-type supracrustal sequences include the Mount Dowe, Malala Drift and Gumbu Groups, comprising quartzofeldspathic units, biotite-bearing gneiss, quartzite, metapelite, metacalcsilicate and ortho- and para-amphibolite. Previous studies define tectonometamorphic events at 3.3–3.1 Ga, 2.7–2.5 Ga and 2.04 Ga. Detailed structural mapping over 10 years highlights four deformation events at Venetia. Rules-based implicit 3D modelling in Leapfrog Geo™ provides an unprecedented insight into CZ ductile deformation and sheath folding. D1 juxtaposed gneisses against metasediments. D2 produced a pervasive axial planar foliation (S2) to isoclinal F2 folds. Sheared lithological contacts and S2 were refolded into regional, open, predominantly southward-verging, E–W trending F3 folds. Intrusion of a hornblendite protolith occurred at high angles to incipient S2. Constrictional-prolate D4 shows moderately NE-plunging azimuths defined by elongated hornblendite lenses, andalusite crystals in metapelite, crenulations in fuchsitic quartzite and sheath folding. D4 overlaps with a: 1) 2.03–2.01 Ga regional M3 metamorphic overprint; b) transpressional deformation at 2.2–1.9 Ga and c) 2.03 Ga transpressional, dextral shearing and thrusting around the CZ and d) formation of the Avoca, Bellavue and Baklykraal sheath folds and parallel lineations.  相似文献   

20.
东亚原特提斯洋(Ⅳ):北界西段早古生代构造变形   总被引:2,自引:2,他引:0  
北祁连造山带是原特提斯洋北支西段——古祁连洋闭合的地质记录,其经历了早古生代复杂的造山过程,但其俯冲极性、闭合时间、拼合方式还存在争议。通过详细的野外构造解析,并对变质年代学资料进行统计,在研究区识别出三幕早古生代褶皱变形。其中,第一幕变形发生在489~442Ma,形成于古祁连洋壳俯冲-碰撞阶段,主要表现为区域性的片理、片麻理或糜棱叶理;第二幕变形发生在422~406Ma,形成于俯冲板片的折返阶段,主要表现为轴面南倾的紧闭褶皱;第三幕变形则主要为轴面近于直立的宽缓褶皱。前两幕变形被第三幕变形叠加改造。祁连地区广泛分布着奥陶系-志留系与上覆泥盆系的角度不整合,不整合面上、下的地层对比指示西段不整合时间早于东段不整合时间,可能代表了古祁连洋西段拼合较早、东段拼合较晚的斜向"剪刀式"拼合。此外,多条穿过整个研究区的1∶20万地质剖面上的运动学解析,揭示了古祁连洋壳自北向南的俯冲极性。综合以上研究结果,认为古祁连洋壳最早的俯冲时间为544Ma,中祁连和阿拉善微陆块自462Ma开始碰撞拼合,古祁连洋于442Ma最终闭合。早古生代原特提斯洋北界西段俯冲方式为自南向北"后退式"俯冲,可能发生过俯冲带跃迁事件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号