首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of solar flare energetic X-ray events has been detected by an ionization chamber on the OGO-I and OGO-III satellites in free space. These X-rays lie in the range 10–50 keV, and a study has been made of their relationship to 3 and 10 cm radio bursts and with the emission of electrons and protons observed in space. The onset times, times of maximum intensity and total duration are very similar for the radio and X-ray emission. Also, the average decay is similar and usually follows an exponential type behavior. However, this good correlation applies most often to the flash phase of flares, whereas subsequent surges of activity from the same eruption may produce microwave emission or further X-ray bursts not closely correlated. An approximate proportionality is found between the total energy content of the X-rays and of the 3 and 10 cm integrated radio fluxes. These measurements suggest that the X-ray and microwave emission have a common energizing process which determines the time profile of both. The recording of electrons greater than 40 keV by the Interplanetary Monitoring Probe (IMP satellite) has been found to correlate very well with flares producing X-ray and microwave emission provided the propagation path to the sun is favorable. There is evidence that the acceleration of solar protons may not be closely associated with the processes responsible for the production of microwaves, X-rays, and interplanetary electrons.The OGO ionization chamber responds to energies (10–50 keV) intermediate between the soft X-rays giving SID disturbances (1–10 keV) and energetic quanta previously measured with balloons (50–500 keV). Proposed source mechanisms should be capable of covering this range of energies including the most energetic quanta occasionally observed.  相似文献   

2.
One recent discovery that provides a strong constraint on the mechanisms of astrophysical activities is the correlation between the flux and the root-mean-squared (rms) variability of X-ray emission. In this work we study the flux-rms relation of solar radio bursts. Four flares observed by the Solar Radio Broadband Spectrometer (SRBS) of China are analyzed. In these flares, fine structures (FSs) emerge at least in one frequency band of SRBS. We find that the flux-rms relation consists of two components. One relates to the non-FS emission and the other to the FS emission. The flux-rms relationship for the non-FS part of the radio bursts is clearly different from that for the FS part. The former shows a curve-like behavior, while the latter shows a dramatic variation. We propose a model to describe the flux-rms relation of the non-FS part. Our results imply that the non-FS part emission could be triggered by some multiplicative processes. On the contrary, multiplicative mechanisms should be excluded from the explanations of FSs in the radio bursts.  相似文献   

3.
Hot regions in solar flares produce X-radiation and microwaves by thermal processes. Recent X-ray data make it possible to specify the temperature and emission measure of the soft X-ray source, by using, for instance, a combination of the 1–8 Å (peak response at about 2 keV) and the 0.5–3 Å (peak response at about 5 keV) broad-band photometers. The temperatures and emission measures thus derived satisfactorily explain the radio fluxes, within systematic errors of about a factor of 3. Comparison of 15 events with differing parameters shows that a hot solar flare region has an approximately isothermal temperature distribution. The time evolution of the correlation in a single event shows that the hot material originates in the chromosphere, rather than the corona. The density must lie between 1010 and 2 × 1011 cm–3. For an Importance 1 flare, this implies a stored energy of roughly 2 x 1030-1029 ergs. A refinement of the data will enable us to choose between conductive and radiative cooling models.  相似文献   

4.
G. Chambe 《Solar physics》1969,8(2):369-375
The slowly varying component of solar X-rays in the 0.5–3 Å wavelength range has been studied using data obtained by the satellite Explorer 30 (Solrad 8). The intensity of these X-rays is poorly correlated with the centimeter radio flux, contrary to the good correlation found in the spectral bands 1–8, 8–16 and 44–60 Å. On the other hand the 0.5–3 Å X-ray intensity is often connected to the development of a specific magnetic configuration in the sun spot group which may thus be associated with the X-ray producing active center.  相似文献   

5.
M. R. Kundu 《Solar physics》1996,169(2):389-402
We present a review of selected studies based upon simultaneous radio and X-ray observations of solar flares and coronal transients. We use primarily the observations made with large radio imaging instruments (VLA, BIMA, Nobeyama, and Nançay) along with Yohkoh/SXT and HXT and CGRO experiments. We review the recent work on millimeter imaging of solar flares, microwave and hard X-ray observations of footpoint emission from flaring loops, metric type IV continuum bursts, and coronal X-ray structures. We discuss the recent studies on thermal and nonthermal processes in coronal transients such as XBP flares, coronal X-ray jets, and active region transient brightenings.Dedicated to Cornelis de Jager  相似文献   

6.
The observed correlations between X-ray and type III radio emissions from solar bursts are described by means of a bivariate distribution function. Procedures for determining the form of this distribution are described using a sample of data analyzed by Kane (1981). With the help of this distribution a model is constructed to explain the correlation between the X-ray spectral index and the ratio of X-ray to radio intensities. Implications of the model are discussed.  相似文献   

7.
High-resolution images of the decay phase of a soft X-ray flare observed by the S-054 experiment on Skylab are compared with interferometric scans of the radio burst obtained simultaneously at 2.8 cm (Felli et al., 1975). The spatial resulution of the radio instrument in one direction, although lower than the X-ray telescope resolution, is high enough for a detailed comparison. The comparison clarifies the relationship between the sources of soft X-ray and thermal radio emission in solar flares. The X-ray emission is localized in a loop-like structure which appears spatially coincident with the rapidly varying component of the radio burst. The more stable components of the radio source, which do not appear to contribute substantially to X-ray emission, are found to be spatially associated with the extremes of the X-ray loop. A model of plasma-filled loops is suggested which accounts for the emissions in both spectral ranges and for their spatial location and temporal development.On leave from Osservatorio Astrofisico di Arcetri, Florence, Italy.  相似文献   

8.
Previous work by Motch et al. [1985, Space Sci. Rev. 40, 219] suggested that in the low/hard state of GX, the soft X-ray power-law extrapolated backward in energy agrees with the IR flux level. Corbel and Fender [2002, ApJ 573, L35–L39] later showed that the typical hard state radio power-law extrapolated forward in energy meets the backward extrapolated X-ray power-law at an IR spectral break, which was explicitly observed twice in GX. This has been cited as further evidence that jet synchrotron radiation might make a significant contribution to the observed X-rays in the hard state. We explore this hypothesis with a series of simultaneous radio/X-ray hard state observations of GX. We fit these spectra with a simple, but remarkably successful, doubly broken power-law model that indeed requires a spectral break in the IR. For most of these observations, the break position as a function of X-ray flux agrees with the jet model predictions. We then examine the radio flux/X-ray flux correlation in CYG through the use of 15 GHz radio data, obtained with the Ryle radio telescope, and Rossi X-ray Timing Explorer data, from the All Sky Monitor and pointed observations. We find evidence of ‘parallel tracks’ in the radio/X-ray correlation which are associated with ‘failed transitions’ to, or the beginning of a transition to, the soft state. We also find that for CYG the radio flux is more fundamentally correlated with the hard, rather than the soft, X-ray flux.  相似文献   

9.
A model is presented which shows that large numbers of energetic electrons (0.3-> 10 MeV) and protons (1–30 MeV) can be stored in the solar corona at altitudes around 3 × 105 km for periods in excess of 5 days. Specific reference is made to the time period July 6–16 1968 as an excellent example of energetic solar particle storage. Time histories of interplanetary charged particle intensities observed by the IMP-4 and Pioneer 8 satellites are used to substantiate this contention. Detailed reference is also made to solar X-ray, optical and radio data obtained during the period in question, in addition to interplanetary magnetometer data. This model provides a unique solution to many hitherto unexplained solar particle events, and can also account for the lack of prompt particle emission from certain large solar flares recorded in the past.  相似文献   

10.
Several hundred radio bursts in the decimetric wavelength range (300–1000 MHz) have been compared with simultaneous soft and hard X-ray emission. Long lasting (type IV) radio events have been excluded. The association of decimetric emission with hard X-rays has been found to be surprisingly high (48%). The association rate increases with bandwidth, duration, number of structural elements, and maximum frequency. Type III-like bursts are observed up to the upper limit of the observed band. This demonstrates that the corona is transparent up to densities of about 1010 cm–3, contrary to previous assumptions. This can only be explained in an inhomogeneous corona with the radio source being located in a dense structure. The short decimetric bursts generally occur during the impulsive phase, i.e. simultaneously with hard X-rays. The times of maximum flux are well correlated (within 2 s). The HXR emission lasts 4 times longer then the radio emission in the average. This work finds a close relationship between decimetric and HXR emission with sufficient statistics offering additional information on the flare process.  相似文献   

11.
C. De Jager 《Solar physics》1967,2(3):327-346
A hard solar X-ray burst was observed by J-P. Legrand on 18 September 1963, 13:56 UT, at balloon altitude. It lasted a few minutes; a steep increase was followed by an exponential decay. During its declining phase a weak radio burst was observed on 3 and 10 cm, not on longer wavelengths.Maximum radio intensity occurred two minutes after that of the X-ray burst. The X-ray and radio bursts ended almost simultaneously. Optically a small shortlived (some minutes) flare point occurred simultaneously with the X-ray burst in a magnetically interesting part of the active region of September 1963. The X-burst photons seem to have had an energy of about 0.5 MeV. The burst was therefore of a fairly rare type, since very few other bursts with similar photon energies have been detected up to now.It is suggested that a mass of gas, magnetically confined to a volume of about 5·1025 cm3 in the low corona, containing about 3·1035 electrons was accelerated to energies of about 0.5 MeV. The gas gradually expanded, partly also to higher levels. The gyro-synchrotron radiation, emitted by the plasma became observable after about two minutes. At the lower radio frequencies the radiation was absorbed by overlying undisturbed coronal matter. Quantitative computations justify this model. A detailed summary of the events, and some numerical data are given in the concluding Section 8 and in Table V.  相似文献   

12.
A hard solar X-ray burst in the energy range 90–400 keV was observed at about 0528:30 UT on 13 April 1974. This event is peculiar in the sense that the X-ray flux is considerably high whereas the corresponding radio and optical flares are of moderate sizes, that the duration of the X-ray burst is very short, and that the X-ray peak is delayed by about 2.5 min relative to the first radio peak.  相似文献   

13.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

14.
Š. Pintér 《Solar physics》1969,8(1):149-151
Conclusions The present paper demonstrates on the basis of 2 series of events that one can extend the homology so far known for optical and radio flares also to the hard and soft X-ray bursts.The studied homologous X-ray flares occurred in the same active region and their time-intensity profiles were very similar. It has been found that the detected homologous X-ray bursts are associated with radio bursts that also are homologous. The time profile of centimeter radio bursts frequently is repeated in detail when compared with the time profile of X-ray bursts as one can see in Figure 1. This very close correspondence suggests that the centimeter radio bursts and X-ray bursts are generated simultaneously during flares, probably in the same region (Sengupta, 1968). Arnoldy et al. (1968) have found a detailed correlation between the time-intensity profiles of hard X-ray bursts and 3 or 10 cm radio bursts. This close correlation between the hard X-ray bursts and centimeter radio bursts leads to a suggestion that the hard X-ray and centimeter radio bursts are generated by the same electrons. On the basis of these considerations one can more easily understand the homology of both the X-ray bursts and the radio bursts. The occurrence of homologous bursts then can be explained by an existence of regions on the sun in which for a certain time (48 h after Fokker) the same conditions are maintained in the acceleration of the electrons generating the X-ray and radio bursts.  相似文献   

15.
The observations of the solar radio emission on September 11, 2001, with the RATAN-600 radio telescope (southern sector) at four centimeter wavelengths (1.92, 2.24, 2.74, and 3.21 cm) revealed synchronous brightenings in solar radio sources. These were identified on the solar photosphere with active regions that were spaced up to ~106 km apart (AR 9608 and AR 9616). We discuss manifestations of the possible mechanisms of synchronous brightenings in solar sources in a narrow microwave spectral band. The significant linear correlation (ρc = 0.84–0.92) between the relative fluxes of AR 9610 and AR 9608 at 1.92 and 2.24 cm and the significant linear correlation (ρc = 0.65–0.84) between the relative fluxes of AR 9606 and AR 9608 at 3.21 cm in a two-hour interval of observations are indicative of the interconnection between these active regions not only during flares and bursts, but also in the periods of their absence. This confirms the existence of a large-scale temporal component in the dynamics of the radio flux variations for these active regions. We found a difference between the temporal variations of the radio emission from the halo and the solar radio sources under consideration. The times of increase in the total solar soft X-ray (0.5–4.0 Å, 1.0–8.0 Å; GOES 8, GOES 10) flux are shown to coincide with the times of increase in the fluxes from the solar radio sources at short centimeter wavelengths.  相似文献   

16.
Semi-quantitative reports of shortwave radio reception during the 12 November 1966 total solar eclipse have been used to determine the characteristics of a major source of D layer ionization. An effective electron depletion coefficient of 1.2 × 10–2 sec–1 was found empirically and used to reduce the data. Analysis of the radio absorption shows the source was located near heliographic coordinates, B = +7°, L = 340° and was probably less than 0.5 of arc in diameter. At the time of the eclipse, the source accounted for 40% of the radio absorption on a single, vertical pass through the D layer. Preoccultation behavior of the signal strength is interpreted by assuming a portion of the source X-ray flux was reflected at grazing incidence from the limb of moon. For point sources, such reflections have specific chromatic characteristics which were used to derive a crude source spectrum in the 3–140 Å range. X-ray absorption edges of N, O, Na, Be, and possible Mg, Ar, Ne, Ca, and K arising from the terrestrial atmosphere have been identified. A source temperature approximately twice that of the rest of the corona is indicated.  相似文献   

17.
Solar X-rays from 8–12 Å have been observed with an ion chamber photometer and fluxes derived from the observations after an assumption concerning the spectral distribution. The time variation of the X-ray flux correlates well with the radio flux, plage index, and sunspot number. Comparisons of X-ray and optical events are given; flares seem to produce soft X-rays, but some soft X-ray bursts are apparently not associated with flares. The total energy involved in the soft X-ray bursts may be a significant amount of the total flare radiation.  相似文献   

18.
Peak flux spectra of solar radio bursts in a wide frequency band have been statistically determined for different morphological types of bursts, for various ranges of magnetic field of the burst-associated sunspots and also for the bursts occurring in the central and limb region of the solar disk. Important results obtained are: (i) The generalised spectra have two peaks, one near to meter-wave and the other in the centimeter-wave region, the former peak being more pronounced than the latter; (ii) identical spectral shape is observed for the great and impulsive types and also for GRF and PBI types of bursts; (iii) the radio emission intensity is relatively higher in the central part than that in the limb part of the solar disk for frequencies 1–10 GHz, while the reverse is true for frequencies 0.245–1 GHz and 10–35 GHz; (iv) the optical depth of the absorbing layer above the source of a burst is found to be the same for meter to centimeter-wavelength bursts, implying that the radio sources in this wide band have uniform characteristics with respect to optical thickness; (v) in case of simultaneous emission in the dekameter to X-ray band, most of the decimetric bursts are seen to be very prompt and coincident with the associated flare's starting time. The interpretations of the obtained spectra give an insight into the possible generation mechanisms, pointing to the location of the source region in the solar atmosphere.  相似文献   

19.
Sudden phase anomalies (SPA's) observed in the phase of GBR 16 kHz VLF signals during the years 1977 to 1983 have been analysed in the light of their associated solar X-ray fluxes in the 0.5–4 Å and 1–8 Å bands. An attempt has been made to investigate the solar zenith angle () dependence of the integrated solar X-ray flux for producing SPA's. It is deduced from the observations for < 81° that the phase deviation increases linearly as a whole with increasing solar X-ray fluxes in these two bands. The threshold X-ray flux needed to produce a detectable SPA effect has been estimated to be 1.6 × 10–4 ergcm–2 s–1 and 1.8 × 10–3 ergcm–2 s–1 in the 0.5–4 Å and 1–8 Å bands, respectively. For both bands the average cross section for all atmospheric constituents at a height of 70 km is almost equal to the absorption cross section for the 3 Å X-ray emission.  相似文献   

20.
The 120 limb surges which have been observed by means of Wrocaw Observatory coronagraph from September 1966 to November 1977 are investigated. The evolution of surges was compared with the radio data during the surges. A correlation between radio bursts and the surges was found, particularly with chains of type I radio bursts, which is the first reliable correlation found of these bursts with non-radio events. The type I correlation only applied for surges without accompanying flare, of which 43% are correlated with this type of radio emission. In 23 of 30 associated events the start of a surge coincided within 5 minutes with the start or an enhancement of the type I storm. If flares were present, the association was not significant.We also compared the maximum height reached by a surge with the frequencies of the radio bursts emitted at the same time and the maximum velocity of the rising surge with the frequency drift of type I chains. No such a correlation was however found.We discuss the possibility that surges are the result of a sudden energy input into the chromosphere related to the type I source in the corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号