首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flank instability and collapse are observed at many volcanoes. Among these, Mt. Etna is characterized by the spreading of its eastern and southern flanks. The eastern spreading area is bordered to the north by the E–W-trending Pernicana Fault System (PFS). During the 2002–2003 Etna eruption, ground fracturing along the PFS migrated eastward from the NE Rift, to as far as the 18 km distant coastline. The deformation consisted of dextral en-echelon segments, with sinistral and normal kinematics. Both of these components of displacement were one order of magnitude larger (~1 m) in the western, previously known, portion of the PFS with respect to the newly surveyed (~9 km long) eastern section (~0.1 m). This eastern section is located along a pre-existing, but previously unknown, fault, where displaced man-made structures give overall slip rates (1–1.9 cm/year), only slightly lower than those calculated for the western portion (1.4–2.3 cm/year). After an initial rapid motion during the first days of the 2002–2003 eruption, movement of the western portion of the PFS decreased dramatically, while parts of the eastern portion continued to move. These data suggest a model of spreading of the eastern flank of Etna along the PFS, characterized by eruptions along the NE Rift, instantaneous, short-lived, meter-scale displacements along the western PFS and more long-lived centimeter-scale displacements along the eastern PFS. The surface deformation then migrated southwards, reactivating, one after the other, the NNW–SSE-trending Timpe and Trecastagni faults, with displacements of ~0.1 and ~0.04 m, respectively. These structures, along with the PFS, mark the boundaries of two adjacent blocks, moving at different times and rates. The new extent of the PFS and previous activity over its full length indicate that the sliding eastern flank extends well below the Ionian Sea. The clustering of seismic activity above 4 km b.s.l. during the eruption suggests a deep décollement for the moving mass. The collected data thus suggests a significant movement (volume >1,100 km3) of the eastern flank of Etna, both on-shore and off-shore.Editorial responsibility: R. Cioni  相似文献   

2.
The submarine counterparts of late Quaternary subaerial pyroclastic flow deposits off the western flanks of Dominica, Lesser Antilles, have been investigated by 3.5 kHz seismic profiling and dredging (cruise EN20 of R/V “Endeavor”). Block-and-ash flow deposits formed by dome collapse and a welded ignimbrite from a prominent fan at Grande Savanne, Dominica. This fan can be traced underwater as a major constructional ridge (2–4 km wide and 200–400 m thick) to over 13 km offshore at a water depth of 1800 m. The submarine ridge has a volume of 14 km3 and has the characteristic morphology of a debris flow apron composed of several individual units. The evidence suggests that pyroclastic flows can move underwater without losing their essential character.  相似文献   

3.
The Medina Wrenth in the central Mediterranean is a transform fault connecting the plate collision in northwest Africa and northern Sicily with that occurring at the Aegean plate boundary, south of Greece. The more than 800 km long crescent-shaped wrench zone is currently seismically quiet but exhibits major deformation since 5 Ma within a belt 30–100 km wide. It forms the southern boundary of two microplates moving eastward with respect to Africa and Europe. A simple plate rotation model constrained by recent paleomagnetic data indicates that a continental Iblean microplate and a hybrid continental/oceanic Ionian microplate, separated along the Malta Escarpment, have rotated anticlockwise by 11° and 12°, respectively, around poles in southern Italy. These rotations involved some 100 km of dextral eastward movement relative to Africa of the Ionian Basin north of the Medina Wrench since 5 Ma. Combining the published 26° clockwise rotation of the Peloponnesus and northwest half of the Aegean with the 12° anticlockwise rotation of the Ionian microplate results in (a) a 99% agreement between the length of the seismic Benioff Zone beneath Greece and the total convergence of the microplates, and (b) an average rate of convergence across the Aegean plate boundary southwest of the Peloponnesus of 6.6 ± 1cm a−1 since the Miocene. Relative motion between microplates in a collision zone thus may be as much as 6 times faster than convergence between the major plates which spawned them, and they can be considered rigid to the first order over the time span involved.  相似文献   

4.
Summary The electrode effect could be detected in full magnitude on the Atlantic during the expedition of the research vessel Meteor. The average value of the electric field over the sea surface is about 125 V/m, in about 10 to 100 m over the surface only about 60 V/m. This phenomenon as well as the results of small ion records lead to a value of the air earth current density on the sea of only 0.9×10–12 A/m2, a quarter of the value accepted up to now. With these values the total current of the global air electric circuit will be about 665 A instead of 1500 to 1800 A. The ionosphere potentials over two places in a distance of 8000 km at 15 dates are nearly identical and in the average 280 kV.  相似文献   

5.
现代地震学展现出了一个复杂的地球内核内部和表面结构.地球内核内部结构的主要特征表现为其地震波速度和衰减呈现各向异性,且各种结构(速度、衰减和各向异性)均呈现东西半球差异,而内核表面的新发现则包括其局部区域存在起伏的地形和固液并存的糊状层.地球内核压缩波速度和衰减均呈现以地球旋转轴为轴的柱对称各向异性,沿地球旋转轴方向传播的压缩波比沿赤道方向传播的压缩波传播更快且衰减更强烈.同时,内核各向异性结构随深度而变化:内核顶部约100~400 km接近各向同性,而在内核最深处300~600 km内则可能存在一个具有不同各向异性特征的内内核.地球内核的东西半球差异表现在多方面:在内核顶部~100 km厚度内,东半球的各向同性速度比西半球快约0.8%,东半球具有较强的衰减(Q=250),而西半球则具有较弱的衰减(Q=600);西半球的顶部各向同性层厚度约为100 km,而东半球顶部各向同性层厚度则约为400 km;在各向同性层底下,西半球具有较强的各向异性(~4%),而东半球则具有较弱的各向异性(~0.7%).地球内核边界在菲律宾海、黄海、西太平洋以及中美洲下方存在1~14 km高的地形起伏,在鄂霍次克海西南部下方存在4~8 km厚的糊状层.地球内核的这些新发现引发了对许多可能的新物理机制的探讨,也促使我们重新评估我们对外核成分、外核热化学对流、内核凝固过程和地球磁场驱动力的认识.这些结果表明内核凝固过程和地球磁场的热和化学驱动力远比传统观念认为的横向均匀分布复杂得多.内核西半球可能不断凝固并释放潜热和轻元素,而东半球则可能不断熔化并吸收潜热和轻元素,外核对流的驱动力在东西半球可能截然不同,甚至呈现相反方向.这些凝固与熔化交替过程也发生在局部地形起伏区域.在糊状层区域,地球内核凝固释放潜热和化学能,而在大部分无糊状地区,内核凝固只释放潜热.  相似文献   

6.
It could be shown by measurements of the air conductivity and using a mean profile for the ionization rate that experimental and theoretical values of the recombination rate of small ions based on a three body recombination process (Thomson) are in very good agreement up to 20 km altitude. The divergency of the experimental and theoretical curves above 20 km can be interpreted by assuming that there exists in this altitude region a crossover from the three body recombination to a two body recombination process. The value of the recombination coefficient is about 4·10–7 cm3 s–1 in 25 km altitude, compared with 1.4·10–6 cm3 s–1 at ground level. Furtheron it was possible for the first time to get some experimental data of attachment coefficients up to 13 km from simultaneous measurements of the air conductivity and Aitken nuclei concentration. These values are in good agreement with those obtained by theoretical considerations.  相似文献   

7.
Summary Spectrometric experiments performed, in November 1976, within the framework of the Latitude Survey Mission on board the NASA Convair 990 from Ames Research Center are briefly deseribed. The results presented concern odd nitrogen molecules, HCl and water vapor. In terms of vertical column density, HNO3 is predominant over NO+NO2 at all latitudes higher than 40 degrees. A seasonal variation of NO2 abundance is observed, with larger values in the summer hemisphere at high latitude. The mean zenith column density of HCl above 11 km is 1.5×1015 mol.cm–2, with no evidence for any seasonal or climatic variation. Local number densities as high as 1.4×1010 mol.cm–3 for HNO3 and 5.4×1014 mol.cm–3 for water vapor have been measured during the same flight near 11 km.  相似文献   

8.
A common feature of evening near-range ionospheric backscatter in the CUTLASS Iceland radar field of view is two parallel, approximately L-shell-aligned regions of westward flow which are attributed to irregularities in the auroral eastward electrojet region of the ionosphere. These backscatter channels are separated by approximately 100–200 km in range. The orientation of the CUTLASS Iceland radar beams and the zonally aligned nature of the flow allows an approximate determination of flow angle to be made without the necessity of bistatic measurements. The two flow channels have different azimuthal variations in flow velocity and spectral width. The nearer of the two regions has two distinct spectral signatures. The eastern beams detect spectra with velocities which saturate at or near the ion-acoustic speed, and have low spectral widths (less than 100ms–1), while the western beams detect lower velocities and higher spectral widths (above 200ms–1). The more distant of the two channels has only one spectral signature with velocities above the ionacoustic speed and high spectral widths. The spectral characteristics of the backscatter are consistent with E-region scatter in the nearer channel and upper-E-region or F-region scatter in the further channel. Temporal variations in the characteristics of both channels support current theories of E-region turbulent heating and previous observations of velocity-dependent backscatter cross-section. In future, observations of this nature will provide a powerful tool for the investigation of simultaneous E- and F-region irregularity generation under similar (nearly co-located or magnetically conjugate) electric field conditions.  相似文献   

9.
The Fukuoka District Meteorological Observatory recently logged three possible deep low-frequency earthquakes (LFEs) beneath eastern Kyushu, Japan, a region in which LFEs and low-frequency tremors have never before been identified. To assess these data, we analyzed band-pass filtered velocity seismograms and relocated LFEs and regular earthquakes using the double-difference method. The results strongly suggest that the three events were authentic LFEs, each at a depth of about 50 km. We also performed relocation analysis on LFEs recorded beneath the Kii Peninsula and found that these LFEs occurred near the northwest-dipping plate interface at depths of approximately 29–38 km. These results indicate that LFEs in southwest Japan occur near the upper surface of the subducting Philippine Sea (PHS) plate. To investigate the origin of regional differences in the occurrence frequency of LFEs in western Shikoku, the Kii Peninsula, and eastern Kyushu, we calculated temperature distributions associated with PHS plate subduction. Then, using the calculated thermal structures and a phase diagram of water dehydration for oceanic basalt, the water dehydration rate (wt.%/km), which was newly defined in this study, was determined to be 0.19, 0.12, and 0.08 in western Shikoku, the Kii Peninsula, and eastern Kyushu, respectively; that is, the region beneath eastern Kyushu has the lowest water dehydration rate value. Considering that the Kyushu–Palau Ridge that is subducting beneath eastern Kyushu is composed of tonalite, which is low in hydrous minerals, this finding suggests that the regionality may be related to the amount of water dehydration associated with subduction of the PHS plate and/or differences in LFE depths. Notable dehydration reactions take place beneath western Shikoku and the Kii Peninsula, where the depth ranges for dehydration estimated by thermal modeling agree well with those for the relocated LFEs. The temperature range in which LFEs occur in these regions is estimated to be 400–500 °C.  相似文献   

10.
The mean flow at and around the Hebrides and Shetland Shelf slope is measured with ARGOS tracked drifters. Forty-two drifters drogued at 50 m were deployed in three circles over the Hebrides slope at 56.15°N in two releases, one on 5th December, 1995 and the second on 5–9th May, 1996. The circles span a distance of some 20 km from water depths of 200 m to 1200 m. Drifters are initially advected poleward along-slope by the Hebrides slope current at between 0.05 and 0.70 m s–1 in a laterally constrained (25–50 km wide) jet-like flow. Drifters released in winter remained in the slope current for over 2000 km whilst summer drifters were lost from the slope current beyond the Wyville-Thomson Ridge, a major topographic feature at 60°N. Dispersion from the slope region into deeper waters occurs at bathymetric irregularities, particularly at the Anton Dohrn Seamount close to which the slope current is found to bifurcate, both in summer and winter, and at the Wyville-Thomson Ridge where drifters move into the Faeroe Shetland Channel. Dispersion onto the continental shelf occurs sporadically along the Hebrides slope. The initial dispersion around the Hebrides slope is remarkably sensitive to initial position, most of the drifters released in shallower water moving onto the shelf, whilst those in 1000 m or more are mostly carried away from the slope into deeper water near the Anton Dohrn Seamount. The dispersion coefficients estimated in directions parallel and normal to the local direction of the 500 m contour, approximately the position of the slope current core, are approximately 8.8 × 103 m2 s–1 and 0.36 × 103 m2 s–1, respectively, during winter, and 11.4 × 103 m2 s–1 and 0.36 x 103 m2 s–1, respectively, during summer. At the slope there is a minimum in across-slope mean velocity, Reynolds stress, and across-slope eddy correlations. The mean across-slope velocity associated with mass flux is about 4 × 10–3 m s–1 shelfward across the shelf break during winter and 2 × 10–3 m s–1 during summer. The drifters also sampled local patterns of circulation, and indicate that the source of water for the seasonal Fair Isle and East Shetland currents are the same, and drawn from Atlantic overflows at the Hebrides shelf.  相似文献   

11.
Regional characteristics of the synoptic-scale wave disturbances in the tropical lower troposphere were examined by analyzing the FGGE level III-b data. Three tropical regions, western Pacific, eastern Pacific, and a region from the African Continent to the Atlantic, were selected for the present study. Spectrum analysis, trajectory analysis and composite analysis were used to obtain characteristics of the wave disturbances for each region.Main findings are as follows: 1.) The generation region of the western Pacific wave disturbances related to typhoon development are found around 5° N and 170° E. 2.) An interaction of the western Pacific wave disturbances with the upper Mid-Pacific trough was indicated statistically as an intensifying condition for typhoons. 3.) The wave disturbances in the eastern Pacific originate to the west of Panama and propagate west-north-westward with a period of 5.7 day and a wavelength of about 2700 km. 4.) The structure of the eastern Pacific wave disturbances is similar to that of the western Pacific disturbances. 5.) Two different paths of the African waves are found over the African Continent. The northern disturbance has a period of 4.4 days while the southern one has a period of 3.3–3.6 days. 6.) Disturbances along the northern path of the African waves are traced only to as far as 45° W, and those along the southern path are traced to the Caribbean Sea.  相似文献   

12.
The Ihlara Valley is situated within a volcanic arc that is formed by the collision of the eastern Mediterranean plate system with the Anatolian plate. In this study we will present data from a reservoir monitoring project over the Ihlara-Ziga geothermal field, located 22 km east of Aksaray, in central Anatolia.Although identified geothermal resources in the Ihlara Valley are modest, substantial undiscovered fields have been inferred primarily from the volcanic and tectonic setting but also from the high regional heat flow (150–200 mWm−2) on the Kir ehir Massif.In 1988 and 1990, geoelectromagnetic surveys were undertaken by MTA-Ankara to confirm the presence of a relatively shallow (≈ 0.5–1 km), hydrothermally caused conductive layer or zone. CSAMT and Schlumberger resistivity data show good correspondence with each other, and 2-D geoelectric models are also in harmony with geologic data and gravity anomalies.The depth of the resistive basement, which is interpreted as Paleozoic limestone, is 200–250 m in the western part and increases eastward (≈ 600–750 m). This may imply N-S-oriented normal faulting within the survey area. The parameters of the top layer are a resistivity of 25 to 95 ohm m and a thickness of between 100 and 250 m. The thickness of the conductive tuffs between the top layer and the basement, whose resistivity is about 4–5 o hmm, also increases eastward (from 100 to 450 m). The apparent resistivity maps for the frequencies between 32 and 2 Hz reveal a localized low resistivity anomaly to the east of Belisirma.  相似文献   

13.
Augustine, an island volcano in Lower Cook Inlet, southern Alaska, erupted in January, 1976, after 12 years of dormancy. By April, when the eruptions ended, a new lava dome had been extruded into the summit crater and about 0.1 km3 of pyroclastics had been deposited on the island, mainly as pyroclastic debris avalanches and pumice flows. The ventclearing phase in January was highly explosive and we have been able to document 13 major vulcanian eruptions.The timing, thermal energy, mass loading of fine particles and the horizontal dispersion of these eruption clouds were determined from radar measurements of cloud height, reports of pilots flying in plumes, satellite photography, seismic records and infrasonic detection of air waves. A lower estimate of the mass of fine (r < 68 μm) particles injected into the troposphere from the 13 main eruptions in January is 5.5–18 × 1012 g. The corresponding mass loading of fine particles within individual eruption clouds is 0.3–1 g m−3. We calculated thermal energies of 4 × 1014 to 35 × 1014 J for individual eruptions by applying convective plume rise theory to observed cloud heights and seismically determined eruption durations. This energy range compares favorably with the 4–16 × 1014 J of thermal energy, calculated from the cooling of juvenile material contained in a typical eruption cloud.The vulcanian eruption clouds stayed intact for at least 700 km downwind. Satellite images in both visible and infrared wavebands, showing the Gulf of Alaska just after sunrise on January 23, reveal a series of puffs strung out downwind from the volcano, 20–30 km in diameter and with their tops at altitudes of about 8 km, overlying a continuous plume at altitude 4 km. Each puff corresponded to a seismically and infrasonically timed eruption. A substantial portion of the material injected into the atmosphere between January 22 and 25 was rapidly transported by the subpolar jet stream through southwestern Canada and the western United States, then northeast across the States into the Atlantic. The clouds were observed passing over Tucson, Arizona, on January 25 at an elevation of 7 km.Several of the eruptions penetrated into the stratosphere. Sun photometer measurements, taken at Mauna Loa, Hawaii, six weeks after the eruption, showed an increased stratospheric optical thickness of 0.01 (wavelength 0.5 μm), which decayed in about 5 months. The maximum column mass loading of the veil was 4–10 × 10−7 g cm−2. The mass of the veil, spread-ever a fourth of the earth's surface, is 10 to 100 times larger than can be accounted for by assuming that injected ash and converted sulfate particles from the 13 main Augustine eruptions are the only components contributing to the stratospheric turbidity observed at Mauna Loa.  相似文献   

14.
Observations taken by aircraft and conventional platforms are used to investigate dynamical, physical, and radiative processes within a marine stratus cloud during the Canadian Atlantic Storms Program (CASP) II field project which took place over the east coast of Canada. Stratus which formed over the ocean on February 6, 1992 during the nighttime, is studied to analyze cloud top and base processes. The cloud was supercooled during the study period. Fluctuations and fluxes are calculated along constant flight altitude legs approximately 100 km long in space. The scales of structures larger than 5 km are removed from the analysis using a running average technique. Droplet spectra obtained by a forward scattering spectrometer probe (FSSP) were used in a 1-D radiative transfer model to calculate infrared (IR) fluxes and radiative heating rates. A heat conservation equation was used to estimate vertical air velocity (w a ) within the cloud. The results showed that, because of a warmer ocean surface, significant moisture and heat were transferred from the ocean surface to the boundary layer. The cloud base was at about 400 m height and the top was at about 1.4 km.w a at the cloud base was estimated about 5 cm s–1. Strong IR cooling rate at the cloud top was calculated to be 75°C day–1 for a 100 m thick layer. Negative skewness inw a , suggesting narrow downdrafts, was likely due to radiative cooling at the cloud top. The entrainment velocity was found to be about 1.5 cm s–1 at cloud top. Mean moisture and heat fluxes within the cloud were estimated to be comparable to those from the ocean surface. Vertical air velocity at the cloud top due to radiative cooling was found to be about –40 cm s–1.  相似文献   

15.
Height distribution of the stratospheric aerosol extinction coefficient was measured in the altitude range 10 to 20 km by a balloon-borne multi-color sunphotometer in May 1978. It is demonstrated that detailed structures of the distribution of stratospheric aerosol can be remotely measured by the solar occultation method as well as by lidar andin situ particle counter observations. In the aerosol layer appearing at 18 km altitude the extinction coefficient at 800–1000 nm wavelength reached to 3×10–7 m–1, which was reasonable compared with lidar observations. Wavelength dependence of the aerosol optical depth was crudely estimated to be proportional to –1.5.  相似文献   

16.
Two extensive marine tephra layers recovered by piston coring in the western equatorial Atlantic and eastern Caribbean have been correlated by electron microprobe analyses of glass shards and mineral phases to the Pleistocene Roseau tuff on Dominica in the Lesser Antilles arc. Tephra deposition and transport to the deep sea was primarily controlled by two processes related to two different styles of eruptive activity: a plinian airfall phase and a pyroclastic flow phase. A plinian phase produced a relatively thin (1–8 cm) airfall ash layer in the western Atlantic, covering an area of 3.0 × 105 km2 with a volume of 13 km3 (tephra). The majority of the airfall tephra was transported by antitrade winds at altitudes of 6–17 km. Aeolian fractionation of crystals and glass occurred during transport resulting in an airfall deposit enriched in crystals relative to the source. Mass balance calculation based on crystal/glass fractionation indicates an additional 12 km3 of airfall tephra was deposited outside the observed fall-out envelope as dispersed ash.Discharge of pyroclastic flows into the sea along the west coast of Dominica initiated subaqueous pyroclastic debris flows which descended the steep western submarine flanks of the island. 30 km3 of tephra were deposited by this process on the floor of the Grenada Basin up to 250 km from source. The Roseau event represents the largest explosive eruption in the Lesser Antilles in the last 200,000 years and illustrates the complexity of primary volcanogenic sedimentation associated with a major explosive eruption within an island arc environment.  相似文献   

17.
We have measured group delays of the spectral components of high-frequency P-waves along two portions of the North Anatolian Fault Zone (NAFZ) in Turkey and in a region of southern Germany. Assuming that the observed dispersion is associated with attenuation in the crust and that it can be described by a continuous relaxation model, we obtained Q and the high-frequency relaxation times for those waves for each of the three regions. Individual P-wave Q values exhibit large scatter, but mean values in the NAFZ increase from about 25 to 60 over the distance range 5–90 km. Mean Q values are somewhat higher in the eastern portion of the NAFZ than in the western portion for measurements made at distances between 10 and 30 km. P-wave Q values in Germany range between about 50 and 300 over the hypocentral distance range 20–130 km. In that region we separated the effects of Q for basement rock (2–10 km depth) from that of the overlying sediment (0–2 km depth) using a least-squares method. Q varies between 100 and 500 in the upper 8–10 km of basement, with mean values for most of the distance range being about 250. Q in the overlying sediments ranges between 6 and 10. Because of large scatter in the Q determinations we investigated possible effects that variations of the source-time function of the earthquakes and truncation of the waveform may have on Q determinations. All of our studies indicate that measurement errors are relatively large and suggest that useful application of the method requires many observations, and that the method will be most useful in regions where the number of oscillations following the initial P pulse is minimized. Even though there is large scatter in our Q determinations, the mean values that we obtained in Turkey are consistent with those found in earlier studies. Our conclusions that Q is significantly higher in the basement rock of Germany than in the basement rock of Turkey and that Q is lower in western Turkey than in eastern Turkey are also consistent with results of Q studies using Lg coda.  相似文献   

18.
First results are presented of a recent onshore seismic survey complementary to the Valsis-2 Cruise, which consisted of ESP, COP and CDP marine seismic profiles across the Valencia Trough (Western Mediterranean).The marine energy source used was an airgun array of 5800 cubic inch recorded at 2 land stations on the western flank of the Valencia Trough, at distances between 10–120 km.The experiment has resulted in an extended sampling of the deep crustal structure of the eastern Mediterranean flank of the Iberian peninsula, as well as the offshore-onshore transition.Three transverse NW-SE profiles have been interpreted. Local thinning of the sedimentary cover has been determined towards the centre of the basin which, together with the shallow high velocities observed on the southern profile, could be related to volcanic episodes.A seismic continental basement has been found at depths between 3 and 5 km. A thin lower crust (3–5 km) with velocities around 6.8 km/s has been identified in the northern part of the basin. Alternative crustal models considered for the 3 profiles have been tested, not only from arrival times but also from relative amplitude distributions. A first-order Moho discontinuity fits the data best. The welldefined Moho boundary results in energetic PMP reflections, and a clear updoming is observed towards the interior of the basin, from depths about 20–21 km inshore of Barcelona to 15–17 km depths 60 km offshore. An anomalous upper mantle with low Pn velocities of about 7.7 km/s is confirmed in most of the sampled areas.  相似文献   

19.
The central Taupo Volcanic Zone (TVZ) is a region of intense Quaternary rhyolitic volcanism and geothermal activity in the North Island of New Zealand from which about 14,000 km3 of pyroclastics and lavas have been erupted during the last 1.6 Ma. Analysis of aeromagnetic surveys over the TVZ showed the presence of long-wavelength (10 to 25 km) magnetic anomalies which roughly follow the trend of the currently active eastern TVZ, from the north of Lake Taupo to the east of Lake Rotorua. An interpretation of the long-wavelength magnetic anomalies using 3-D magnetic modelling suggests that these anomalies are caused by the magnetic effects of < 3 km thick sequence of volcanic rocks and deeper magnetised bodies within the non-magnetic upper crust (4–7 km depth) beneath the young (age < 0.7 Ma), currently active eastern TVZ. The deep magnetised bodies are interpreted as solidified rhyolitic sub-volcanic plutons that have cooled down to below their Curie temperature.Although the existence of plutonic bodies beneath the TVZ has been postulated prior to this study, this magnetic interpretation result appears to be the first geophysical model of such bodies.  相似文献   

20.
The 9 March 1957 Aleutian earthquake has been estimated as the third largest earthquake this century and has the longest aftershock zone of any earthquake ever recorded—1200 km. However, due to a lack of high-quality seismic data, the actual source parameters for this earthquake have been poorly determined. We have examined all the available waveform data to determine the seismic moment, rupture area, and slip distribution. These data include body, surface and tsunami waves. Using body waves, we have estimated the duration of significant moment release as 4 min. From surface wave analysis, we have determined that significant moment release occurred only in the western half of the aftershock zone and that the best estimate for the seismic moment is 50–100×1020 Nm. Using the tsunami waveforms, we estimated the source area of the 1957 tsunami by backward propagation. The tsunami source area is smaller than the aftershock zone and is about 850 km long. This does not include the Unalaska Island area in the eastern end of the aftershock zone, making this area a possible seismic gap and a possible site of a future large or great earthquake. We also inverted the tsunami waveforms for the slip distribution. Slip on the 1957 rupture zone was highest in the western half near the epicenter. Little slip occurred in the eastern half. The moment is estimated as 88×1020 Nm, orM w =8.6, making it the seventh largest earthquake during the period 1900 to 1993. We also compare the 1957 earthquake to the 1986 Andreanof Islands earthquake, which occurred within a segment of the 1957 rupture area. The 1986 earthquake represents a rerupturing of the major 1957 asperity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号