首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geodinamica Acta》2001,14(1-3):159-167
Pliocene–Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the Kızılırmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of Şarkışla (Sivas–central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region.  相似文献   

2.
The 40Ar–39Ar dating reveals three episodes of basaltic volcanism in eastern Guangdong of SE China since the late Eocene (i.e., 35.5, ~20 and 6.6 Ma). The Miocene alkali olivine basalts (~20 and 6.6 Ma) have OIB-like trace element characteristics, which is coupled with low (87Sr/86Sr)i, high εNd(t), and high εHf(t). In contrast, the late Eocene basalts (35.5 Ma) have overall characteristics of “Island Arc” basalts with strong negative Ta–Nb–Ti anomalies in the primitive mantle-normalized multi-element diagram with high (87Sr/86Sr)i, negative εNd(t), and relatively low εHf(t). All basalts have unexpectedly high 207Pb/204Pb and 208Pb/204Pb, delineating a DUPAL signature in the sources. The late Eocene Arc-like basalts may reflect contributions of relict ancient metasomatized mantle lithosphere that melted as the result of extension-induced asthenospheric upwelling and heating, whereas the Miocene OIB-like basalts may represent partial melting of the asthenospheric mantle beneath the thickened lithosphere. We propose that the Cenozoic basaltic volcanism in eastern Guangdong records an overall lithospheric thickening process beneath SE China, that is, a continental rift system from its maximum extension in the late Eocene to its waning in the Miocene. This interpretation is consistent with the evolution of the South China Sea, whose origin is most consistent with the development of a passive continental margin. The seafloor spreading of the South China Sea during ~ 32–16 Ma may not result from the effect of the “Hainan” mantle plume, but rather played a positive role in allowing the mantle plume to express on the surface.  相似文献   

3.
Cenozoic lavas from Hainan Island,South China,comprise quartz tholeiite,olivine tholeiite,alkali basalt,and basanite and form a continuous,tholeiite-dominated,compositional spectrum.Highly incompatible elements and their relationships with isotopes in these lavas are shown to be useful in evaluating mantle-source composition,whereas modeling suggests that ratios of elements with bulk partition coefficients significantly larger than those of Nb and Ta may be sensitive to partial melting.Th/Ta and La/Nb ratios of alkali basalts are lower than those of tholeiites,and they are all lower than those of the primitive mantle,These ratios correlate positively with ^207Pb/^204Pb and ^87Sr/^86Sr ratios.Such relationships can be explained by mixing of depleted and enriched source components.A depleted component is indicated by alkali basalt compositions and is similar to some depleted OIB (PREMA).The enriched component,similar to sediment compositions,is indicated by tholeiites with high LILE/HFSE,^207Pb/^204Pb,and ^87Sr/^86Sr ratios.In general,basalts from Hainan and the South China Basin(SCB)share common geochemical characters.e.g.high Rb/Sr,Th/Ta,^207Pb/^206Pb,and low Ba/Th ratios.Such a geochemical trend is comparable to that of EMII-type OIB and best explained as the result of subduction.Occurrence of these characteristics in both continental Hainan basalts and SCB seamout basalts indicates the presence of a South China geochemical domain that exists in the mantle region below the lithosphere.  相似文献   

4.
Early Pliocene (Zanclean) basalts in the Dien Bien Phu pull-apart basin in NW Vietnam, associated with the presently sinistral Dien Bien Phu Fault Zone, have been dated by the K–Ar method at 4.4–4.9 and 5.4–5.2 Ma. Rapid migration of basaltic magma to the surface in the Dien Bien Phu Fault Zone may be due to Pliocene transtension of the crust in this region, resulting from asthenospheric upwelling induced by lateral displacement of the mantle. The basalts are moderately phyric ( < 10%) and consist of olivine (hyalosiderite), plagioclase (bytownite–labradorite) and orthopyroxene (bytownite–labradorite) phenocrysts, and a fine-grained crystalline matrix (olivine–hortonolite, plagioclase–labradorite, clinopyroxene–pigeonite and augite, K-feldspar). The presence of Fe-rich olivine and orthopyroxene phenocrysts indicates that the basalts are SiO2-saturated/oversaturated olivine tholeiites which formed under water-undersaturated conditions. The Dien Bien Phu basalts contain both mantle-derived (pyroxenites, dunites, gabbros) and crustal (sillimanite/mullite + Mg–Fe spinel), wallrock xenoliths, indicative of crustal contamination during the ascent of the basaltic magma. The basalts show selective enrichment in some mobile elements (K, Rb, Sr and Th), a feature considered to be a result of metasomatism. These rocks, classified on the basis of their normative composition as quartz tholeiites, could represent primary olivine tholeiites/basalts, in which the geochemical signatures were modified by the processes of contamination.  相似文献   

5.
Rare-earth-element, radiogenic and oxygen isotope, and mineral chemical data are presented for tholeiitic and alkaline Quaternary volcanism from Karasu Valley (Hatay, southeastern Turkey). Karasu Valley is the northern segment of the Dead Sea transform fault and is filled with flood-basalt type volcanics of Quaternary age. This valley is an active fault zone that is known as “Karasu fault,” extending in a NE-SW direction. The Karasu Valley basaltic volcanics (KVBV) are subaphyric to porphyritic, with variable amounts of olivine, clinopyroxene, and plagioclase phenocrysts. Alkali basalts are generally characterized by high contents of olivine, clinopyroxene, and plagioclase phenocrysts. Their groundmass contains olivine, clinopyroxene, plagioclase, and Fe-Ti oxides. Tholeiitic basalts are subaphyric to porphyritic (high contents of olivine, clinopyroxene, and plagioclase). Their groundmass is similar to that of alkali basalts. The range of olivine phenocryst and microlite compositions for all analyzed samples is Fo81 to Fo43. Plagioclase compositions in both tholeiitic and alkali basalts range from andesine, An38 to bytownite, An72. Clinopyroxene compositions range from diopside to calcic augite. Most of the olivine, plagioclase, and clinopyroxene phenocrysts are normally zoned and/or unzoned. Fe-Ti oxides in both series are titanomagnetite and ilmenite.

Based on normative and geochemical data, the Karasu Valley basaltic volcanics are mostly olivine and quartz-tholeiites, and relatively lesser amount of alkali olivine-basalts. KVBV have low K2O/Na2O ratios, typically between 0.25 and 0.45. Olivine- and quartz-tholeiites are older than alkali olivine-basalts. Olivine tholeiites have Zr/Nb and Y/Nb ratios similar to alkaline rocks, but their Ba/Nb, Ba/La, and La/Nb ratios are slightly higher than alkali olivine-basalts. In contrast, quartz-tholeiites have the highest Ba/Nb, Ba/La, Zr/Nb, and Y/Nb and the lowest Nb/La ratios among the KVBV. Alkali basalts have 87Sr/86Sr and 143Nd/144Nd ratios ranging from 0.703353 to 0.704410 and 0.512860 to 0.512910, respectively. In contrast, quartz-tholeiites have higher 87Sr/86Sr and lower 143Nd/144Nd ratios, which vary from 0.704410 to 0.705490 and 0.512628 to 0.512640, respectively. Olivine tholeiites have intermediate isotopic compositions ranging from 0.703490 to 0.704780 and 0.512699 to 0.512780, respectively. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb isotopic ratios of KVBV range from 18.817 to 19.325, 15.640 to 15.718, and 39.054 to 39.223, respectively. The range of O isotope values is between +5.84 and +7.97‰. The higher O and Sr isotopes in olivine- and quartz-tholeiites relative to alkali olivine-basalts can be explained by contamination of magmas by crustal materials.

The KVBV have intraplate chemistry similar to that of other tholeiitic and alkaline basalts in other within-plate environments, and isotopes range from isotopically depleted mantle to enriched isotope compositions similar to some enriched ocean islands. Trace-element and isotope data indicate that the KVBV are derived from a common OIB-like asthenospheric mantle source, but they have experienced different degrees of crustal contamination during their ascent to the surface, contemporaneous with little fractional crystallization. Although quartz-tholeiites display significant effects of crustal contamination, alkali olivine-basalts appear to have negligible or no crustal contamination in their geesis.  相似文献   

6.
Cenozoic(Miocene to Pleistocene) basaltic rocks in Jiangsu province of eastern China include olivine tholeiite and alkali basalt.We present major,trace element and Sr-Nd isotopic data as well as Ar-Ar dating of these basalts to discuss the petrogenesis of the basalts and identify the geological processes beneath the study area.On the basis of chemical compisitions and Ar-Ar dating of Cenonoic basaltic rocks from Jiangsu province,we suggest that these basalts may belong to the same magmatic system.The alkali basalts found in Jiangsu province have higherΣFeO,MgO,CaO,Na2O, TiO2 and P2O5 and incompatible elements,but lower Al2O3 and compatible elements contents than olivine tholeiite which may be caused by fractional crystallization of olivine,pyroxene and minor plagioclase.In Jiangsu basaltic rocks the incompatible elements increase with decreasing MgO/ΣFeO ratios.The primitive mantle-normalized incompatible elements and chondrite-normalized REE patterns of basaltic rocks found in Jiangsu province are similar to those of OIB.Partial loss of the mantle lithosphere accompanied by rising of asthenospheric mantle may accelerate the generation of the basaltic magma.The 143Nd/144Nd vs.87Sr/86Sr plot indicates a mixing of a depleted asthenospheric mantle source and an EMI component in the study area.According to Shaw’s equation,the basalts from Jiangsu province may be formed by l%-5%partial melting of a depleted asthenospheric mantle source.On the basis of Ar-Ar ages of this study and the fractional crystallization model proposed by Brooks and Nielsen(1982),we suggest that basalts from Jiangsu province may belong to a magmatic system with JF-2 as the primitive magma which has undergone fractional crystallization and evolved progressively to produce other types of basalts.  相似文献   

7.
The Okete Volcanics form small volume monogenetic volcanoes situated around the flanks of larger tholeiitic cones of the Plio-Pleistocene Alexandra Volcanics, in the back-arc tectonic environment of western North Island, New Zealand. The lavas and tuffs of the Okete Volcanics have compositions which include basanites, alkali olivine basalts, olivine tholeiites, and hawaiites. Most rocks have Mg numbers >66, >250 p.p.m. Ni, >500 p.p.m. Cr, and often contain ultramafic xenoliths, which indicate that they are very close to being primary magmas. The Okete Volcanics show geochemical trends, from basanite to hawaiite, of progressive depletion of both compatible and incompatible trace elements, progressive increase in Al2O3, and heavy REE and Y enrichment with crossingover REE patterns in the hawaiites. These geochemical trends can be accounted for by varying degrees of partial melting of a light REE enriched garnet peridotite with subsequent modification of the melts near source or during ascent by fractional crystallization of olivine and minor clinopyroxene. Mass balance calculations cannot quantitatively constrain the degree of partial melting or fractional crystallization, but nevertheless indicate that the Okete alkali olivine basalts, olivine tholeiites, and hawaiites have been derived by successively larger degrees of partial melting relative to basanites, and have also been progressively more modified by fractional crystallization than have the basanites. Sources of the alkalic melts lay at depths corresponding to >20 kb, and most of the ultramafic xenoliths, apart from some which may be cognate cumulates, are unrelated to the magmas that brought them to the surface. Magmas have changed in composition with time from older smaller-volume volcanoes of basanite or alkali olivine basalt compositions, to younger and more voluminous volcanoes which contain hawaiites. The geochemical trends shown by the Okete Volcanics and their spatial association with voluminous tholeiitic volcanism, are features which are different from those observed elsewhere in the Pliocene to Recent basaltic fields of northern North Island, and may be related to their unique tectonic setting, situated in a distinct structural domain.  相似文献   

8.
Abstract

Pliocene-Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the K?z?l?rmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of ?ark??la (Sivas-central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region. © 2001 Éditions scientifiques et médicales Elsevier SAS.  相似文献   

9.
A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe 40Ar/39Ar dating. There are two 40Ar/39Ar age groups for these basalts, corresponding to 259-246 Ma and 177-137 Ma, respectively. A well-defined isochron gives an eruption age of huge quantities of mafic magmas at 258.9±3.4 Ma, which is identical to previous dating and paleontological data. Much younger 40Ar/39Ar ages for some basalts with low-greenschist metamorphic facies probably recorded a late thermo-tectonic event caused by collision between the Yangtze and Qiangtang continental blocks during the Mesozoic, which resulted in the reset of argon isotope system. The 40Ar/39Ar age data, we present here, combined with previous dating and paleontological data, suggest relatively short duration (about 3 Ma) of mafic volcanism, which have important implication on mantle plume genesis of the Emeishan continental flood basalts in the LIP.  相似文献   

10.
东天山博格达造山带石炭纪火山岩及其形成地质环境   总被引:94,自引:35,他引:59  
顾连兴  胡受奚 《岩石学报》2000,16(3):305-316
东天山博格达造山带早、中石炭世海相火山地具有双峰式特征,主要岩性为富钠的玄武岩和流纹岩,其次是英安岩,安山质岩石极少出现。玄武岩的特征是:少数岩石含有实际矿物石英,个别岩石含橄榄石斑晶;辉石主要是透辉石和次透辉石,其成分富含铝(Al2O3=4.17~5.99)和钛(TiO2=2.80~4.78);基质中的长石主要是钠-更长石,斑晶中有相当数量的中长石和拉长石;全岩化学成分CIPW计算结果绝大部分含  相似文献   

11.
韩江伟  熊小林  朱照宇 《岩石学报》2009,25(12):3208-3220
对雷琼地区21个晚新生代玄武岩样品的主量、微量元素和Sr、Nd、Pb同位素分别用湿化学法、ICP-MS和MC-ICPMS进行了测定.这些玄武岩主要为石英拉斑玄武岩,其次为橄榄拉斑玄武岩和碱性玄武岩.大多数样品的微量元素和同位素成分与洋岛玄武岩(OIBs)相似,而且随着SiO_2不饱和度增加,不相容元素含量也增加.除R4-1可能受到地壳混染外,其他样品相对均一的Nd同位素(ε_(Nd)=2.5-6.0)以及变化明显但范围有限的Sr同位素(0.703106~0.704481),可能继承了地幔源区的特征.~(87)Sr/~(86)Sr与~(206)Pb/~(204)Pb的正相关和~(143)Nd/~(144)Nd与~(206)Pb/~(204)Pb的负相关特征暗示DM(软流圈地幔)与EM2(岩石圈地幔)的混合.地幔捕虏体的同位素特征暗示EM2成分不可能存在于尖晶石橄榄岩地幔,而La/Yb和Sm/Yb系统表明岩浆由石榴石橄榄岩部分熔融产生,这意味着EM2成分可能存在于石榴石橄榄岩地幔.雷琼地区玄武岩的地球化学变化可以用软流圈地幔为主的熔体加入不同比例石榴石橄榄岩地幔不同程度熔融产生的熔体来解释:碱性玄武岩和橄榄拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较低程度(7%~9%)熔融体混合,而石英拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较高程度(10%~20%)熔融体的混合.  相似文献   

12.
《Geochimica et cosmochimica acta》1999,63(23-24):4119-4138
Measurements of 238U-230Th-226Ra and 235U-231Pa disequilibria in a suite of tholeiitic-to-basanitic lavas provide estimates of porosity, solid mantle upwelling rate and melt transport times beneath Hawaii. The observation that (230Th/238U) > 1 indicates that garnet is required as a residual phase in the magma sources for all of the lavas. Both chromatographic porous flow and dynamic melting of a garnet peridotite source can adequately explain the combined U-Th-Ra and U-Pa data for these Hawaiian basalts. For chromatographic porous flow, the calculated maximum porosity in the melting zone ranges from 0.3–3% for tholeiites and 0.1–1% for alkali basalts and basanites, and solid mantle upwelling rates range from 40 to 100 cm yr−1 for tholeiites and from 1 to 3 cm yr−1 for basanites. For dynamic melting, the escape or threshold porosity is 0.5–2% for tholeiites and 0.1–0.8% for alkali basalts and basanites, and solid mantle upwelling rates range from 10 to 30 cm yr−1 for tholeiites and from 0.1 to 1 cm yr−1 for basanites. Assuming a constant melt productivity, calculated total melt fractions range from 15% for the tholeiitic basalts to 3% for alkali basalts and basanites.  相似文献   

13.
Tholeiites accompanying a majority of alkali basalts are restricted to the highly productive central part of the CECV plume activity in Vogelsberg and Hessian Depression. They mainly occur as quartz tholeiites which according to experiments of partial melting and material balances are products of olivine tholeiitic primary melts. The differentiation from olivine to quartz tholeiitic melts took place in lower crustal magma chambers where olivine tholeiitic melt intruded due to a density comparable with that of the country rocks. The fractionation due to separation of olivine and some clinopyroxene caused contamination of tholeiite magmas by tonalitic partial melts from the wall rocks of the magma chambers. The latter process is indicated by relatively high Rb, K and Pb and low Nb concentrations and by Nd, Sr and Pb isotopes. Contaminating crustal melts, which roughly attained a proportion of 10%, contained very low 143Nd/144Nd ratios from a Nd/Sm fractionation as old as 2.6 Ga. This is the first evidence from mafic rocks of this high age in the lower crust beneath Central Europe. Modelling with incompatible elements allows to recognize olivine tholeiites as products of about 1% partial melting of plume rocks consisting of 35% primitive and 65% depleted mantle materials. The production of tholeiites other than alkali basalts is restricted to the highest plume activity and the largest fraction of MORB type source rocks. Received: 10 December 1999 / Accepted: 23 June 2000  相似文献   

14.
The mafic–ultramafic Fariman complex in northeastern Iran has been interpreted as a Paleo-Tethyan ophiolitic fragment with subduction- and plume-related characteristics as well as a basin deposit on an active continental margin. Contributing to this issue, we present geochemical, geochronological, and mineralogical data for transitional and tholeiitic basalts. Thermodynamic modeling suggests picritic parental magmas with 16–21 wt% MgO formed at plume-like mantle potential temperatures of ca. 1460–1600 °C. Rare pyroxene spinifex textures and skeletal to feather-like clinopyroxene attest to crystallization from undercooled magma and high cooling rates. Chromium numbers and TiO2 concentrations in spinel are similar to those in intraplate basalts. 40Ar–39Ar dating of magmatic hornblende yielded a plateau age of 276?±?4 Ma (2σ). Transitional basalt with OIB-like trace element characteristics is the predominant rock-type; less frequent are tholeiitic basalts with mildly LREE depleted patterns and picrites with intermediate trace element characteristics. All samples show MORB-OIB like Pb/Ce, Th/La, and Th/Nb ratios which preclude subduction-modified mantle sources and felsic crustal material. Tholeiitic basalts and related olivine cumulate rocks show MORB-like initial εNd values of +?9.4 to +?6.2 which define a mixing line with the data for the transitional basalts (εNd ca. +?2.6). Initial 187Os/188Os ratios of 0.124–0.293 support mixed sources with a high proportion of recycled mafic crust in the transitional basalts. High concentrations of highly siderophile elements are in agreement with the high mantle potential temperatures and inferred high-melting degrees. It is argued that the Fariman complex originated by melting of a mantle plume component as represented by the OIB-like transitional basalt and entrained asthenosphere predominant in the MORB-like tholeiites. Two lines of evidence such as association of the Fariman complex with pelagic to neritic sedimentary rocks and the tectonic position at the boundary of two continental blocks defined by ophiolites and accretionary complexes of different ages suggest formation in an oceanic domain. Thus, we interpret it as a fragment of an oceanic plateau, which escaped subduction and was accreted as exotic block in the Paleo-Tethyan suture zone.  相似文献   

15.
Approximately 160 Ma old basaltic lavas obtained from ODP Site 801 in the Pigafetta Basin represent the first Jurassic oceanic crust recovered in the Pacific Ocean and the oldest in situ oceanic crust discovered anywhere. The basement consists of an upper alkali olivine basalt sequence and a lower tholeiitic sequence separated by a yellow Fe-rich hydrothermal sedimentary deposit. The aphyric and sparsely plagiodase-olivine±spinel phyric tholeiites exhibit depleted, open–system fractionated characteristics with trace element abundances and Pb–Nd isotopic compositions similar to normal mid-ocean ridge basalts (N-MORB). The aphyric alkali basalts, although showing some overlap in isotopic composition with MORB, exhibit strong similarities in terms of incompatible element abundances to ocean island basalts (OIB). They could represent either OIB-type off-axis volcanism or an alkalic event possibly associated with the waning stages of spreading axis volcanism in the Pigafetta Basin. All lavas have undergone low-grade anoxic smectite–carbonate alteration, although flows underlying the Fe-rich sediments have suffered hydrothermal alteration and fracturing.  相似文献   

16.
The Niutoushan basaltic cone, consisting of subalkali (quartz-tholeiite and olivine-tholeiite) and alkali basalts, is Late Tertiary in age. Its major characteristics are generalized as follows:
  1. Both early subalkali and late alkali bali basalts are formed under the same geological environment.
  2. The continuity in chemical composition from subalkali to alkali and the low FeO/MgO in alkali basalts show that they are the products of cognate magmatic differentiation.
  3. The change from low REE abundance and weak enrichment of LREE in subalkali to high REE abundance and strong enrichment of LREE in alkali basalts indicates obvious REE enrichment and fractionation during magmatic differentiation. Weak positive Eu anomalies in the REE patterns are indicative of their formation under low oxygen fugacity conditions.
  4. According to the calculated values, 70–75% of the primary olivine tholeiitic magma had been separated as subalkaline basaltic magma, the rest residual magma became alkaline basaltic magma. This result is consistent to the field observation that the outcrop area of subalkali basalts is four times as much as that of alkali basalts.
  5. The basaltic rocks of Niutoushan show an S-type distribution straddling the thermal barrier on Ol′-Ne′-Qu′ diagram and an evolution tendency for Ne to increase with increasing FeO/MgO. This is in agreement with the melting experimental data on olivine basalts at 10–20 kb.
  6. Mantle-derived inclusions (spinel lherzolite) in this area occur in both alkali olivine basalts and olivine tholeiites. The latter is of extremely rare occurrence. The formation temperature and pressure of the inclusions in alkalibasalts and olivine tholeiites have been calculated. The results show that the alkaline basaltic magma was separated from the subalkaline basaltic magma at about 20 kb.
Basaltic rocks in Niutoushan were formed through the so-called “high pressure differentiation”, that is, at about 20 kb the crystallization of clinopyroxene and orthpyroxene resulted in the separation of subalkaline basaltic magma from the primary olivine tholeiitic magma, and then the residue gradually became alkaline olivine basaltic magma.  相似文献   

17.
The atypical age/distance to the hotspot relationships observed for the Marquesas linear chain, which present a considerable scatter, are best explained considering (1) a Pacific plate motion of 10.5 cm yr?1 in the N115°E direction and (2) rejuvenation of volcanism in Ua Huka island. New K–Ar ages show that the main hotspot activity in Ua Huka emplaced successively shield olivine tholeiites and post‐shield alkali basalts between 3.11 ± 0.04 and 2.43 ± 0.04 Ma. Then, after a quiescence period of 1.28 ± 0.06 Myr, two small basanitic volcanoes were emplaced between 1.15 ± 0.02 and 0.763 ± 0.013 Ma. With respect to the main hotspot volcanics, their lavas originated from weaker partial melting rates of a deeper source. Field, petrologic and geochemical arguments are consistent with the existence of a secondary melting zone located c. 140 km downstream the Marquesas hotspot, which produced the rejuvenated volcanics.  相似文献   

18.
A total of 17 alkali basalts (alkali olivine basalt, limburgite, olivine nephelinite) and quartz tholeiites, and of 10 peridotite xenoliths (or their clinopyroxenes) were analyzed for Nd and Sr isotopes. 143Nd/144Nd ratios and 87Sr/86Sr ratios of all basalts and of the majority of ultramafic xenoliths plot below the mantle array with a large variation in Nd isotopes and a smaller variation in Sr isotopes. The tholeiites were less radiogenic in Nd than the alkali basalts. Volcanics from the Eifel and Massif Central regions contain Nd and Sr, which is more radiogenic than that of the basalts from the Hessian Depression. Nd and Sr isotopic compositions of all rocks from the latter area, with the exception of one tholeiite and one peridotite plot in the same field of isotope ratios as the Ronda ultramafic tectonite (SW Spain), which ranges in composition from garnet to plagioclase peridotite. The alkali basaltic rocks are products of smaller degrees of partial melting of depleted peridotite, which has undergone a larger metasomatic alteration compared with the source rock of tholeiitic magmas. For the peridotite xenoliths such metasomatic alteration is indicated by the correlation of their K contents and isotopic compositions. We assume that the upper mantle locally can acquire isotopic signatures low in radiogenic Nd and Sr from the introduction of delaminated crust. Such granulites low in radiogenic Nd and Sr are products of early REE fractionation and granite (Rb) separation.  相似文献   

19.
琼北火山岩激光40Ar/39Ar定年研究   总被引:1,自引:1,他引:0  
洒骁  季建清  周晶 《岩石学报》2013,29(8):2789-2795
新生代以来,雷琼地区多次、大量地喷发了一系列火山岩。前人主要基于K-Ar法对此划分了期次。本文采用激光40Ar/39Ar年代学方法,对琼北火山岩区进行了精细定年研究。低本底激光40Ar/39Ar法能够对低钾含量,极少量样品(毫克级)进行精细测定,非常适合极年轻火山岩的定年工作。结果显示的火山岩激光40Ar/39Ar法高质量数据表明琼北火山喷发活动时限跨越1.3~0.052Ma。在比较了表观年龄与等时线年龄差异之后,本文给出了年龄推荐值。正如测试数据所显示,本地区新生代火山岩普遍存在40Ar和36Ar过剩的问题,此时只有等时线年龄才代表喷发的真实年龄。  相似文献   

20.
A survey of Recent basaltic rocks in Iceland is presented. The basalts are classified into three groups: tholeiites, transitional alkali basalts and alkali olivine basalts. The basalts can be divided into petrological regions where the composition of lavas seem to have been fairly constant throughout postglacial and possibly late-Pleistocene time. The tholeiites delineate the crest region of the Mid-Atlantic Ridge as it transects Iceland, and the mildly alkali olivine basalts and the transitional alkali basalts characterize the flank volcanic zones. Tholeiitic and alkalic diffrentiated rocks appear to have a distribution in accordance with the basalt distribution pattern. There is some correlation between the chemistry of the zones and the crustal structure of Iceland. Areal discharge of volcanic rocks varies consistently between the petrological regions being highest in the tholeiite regions. The total output of volcanic rocks along the Mid-Atlantic Ridge in the Iceland area reaches maximum in middle Iceland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号